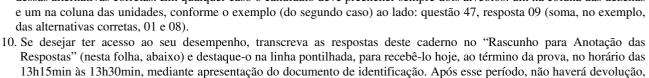


Prova 3 - Química

QUESTÕES OBJETIVAS

Nº DE ORDEM: **Nº DE INSCRIÇÃO:**


NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos N.º DE ORDEM, N.º DE INSCRIÇÃO e NOME, que constam na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao número constante na etiqueta fixada em sua carteira. Se houver divergência, avise imediatamente o fiscal.
- 3. É proibido folhear o Caderno de Questões antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 40 questões objetivas e/ou qualquer tipo de defeito. Qualquer problema, avise imediatamente
- 5. Durante a realização da prova, é proibido o uso de dicionário, de calculadora eletrônica, bem como o uso de boné, de óculos de sol, de gorro, de turbante ou similares, de relógio, de celulares, de bips, de aparelhos de surdez, de MP3 player ou de aparelhos similares. É proibida ainda a consulta a qualquer material adicional.
- 6. A comunicação ou o trânsito de qualquer material entre os candidatos é proibido. A comunicação, se necessária, somente poderá ser estabelecida por intermédio dos fiscais.

09

- 7. O tempo mínimo de permanência na sala é de duas horas e meia, após o início da prova.
- 8. No tempo destinado a esta prova (4 horas), está incluído o de preenchimento da Folha de Respostas.
- 9. No caso de questão com mais de uma alternativa correta, lance na Folha de Respostas o número correspondente a essa alternativa correta. No caso de questão com mais de uma alternativa correta, a resposta a ser lançada corresponde à soma dessas alternativas corretas. Em qualquer caso o candidato deve preencher sempre dois alvéolos: um na coluna das dezenas

- ou seja, esse "Rascunho para Anotação das Respostas" não será devolvido. 11. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.
- 12. A desobediência a qualquer uma das determinações dos fiscais poderá implicar a anulação da sua prova.
- 13. São de responsabilidade única do candidato a leitura e a conferência de todas as informações contidas no Caderno de Questões e na Folha de Respostas.

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS – PROVA 3 – INVERNO 2015

Nº DE ORDEM: NOME: Química 02 03 04 05 06 **07** 08 10 11 12 13 14 15 16 **17** 18 20

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

COM MASSAS ATÔMICAS REFERIDAS AO ISÓTOPO 12 DO CARBONO

18	2 4 He Hélio	10 20 Ne Neômio	18 40 Ar Argônio	36 84 Kr Criptônio	54 131 Xe Xenômio	86 222 Rn Radônio	
	17	9 19 F Flúor	17 35 Cl	35 80 Br Bromo	53 127 1 Iodo	85 210 At Astato	
	16	8 16 O Oxigânio	16 32 S Enxofre	34 79 Selênio	52 128 Te Teltúrio	84 209 Po Polônio	
	15	$egin{array}{ccc} 7 & 14 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\$	1 5 31 P Fósforo	33 75 As Arsênio	51 122 Sb Antimônio	83 209 Bi Bismuto	
	14	6 12 C Carbono	14 28 Silicio	32 73 Ge Gemânio	50 119 Sn Estanho	82 207 Pb Chumbo	
	13	\$ 11 B Boro	13 27 A1 Aluminio	31 70 Ga Gálio	49 115 In Indio	81 204 T1 Tálio	
			12	30 65 Zn Zinco	48 112 Cd Cádmio	80 201 Hg Mercúrio	
			111	29 63 Cu Cobre	47 108 Ag Prata	79 197 Au Ouro	
			10	28 59 Ni Niquel	46 106 Pd Paládio	78 195 Pt Platina	
			6	27 59 Co Cobalto	45 103 Rh Ródio	77 192 Ir Iridio	109 268 Mt Meitnério
			∞	26 56 Fe Ferro	44 101 Ru Rutênio	76 190 Os Osmio	108 277 Hs Hâssio
			7	25 55 Manganès	43 99 Tc Tecnécio	75 186 Re Rênio	107 264 Bh Bóhrio
			9	24 52 Cr Cromo	42 96 Mo Molibdênio	74 184 W Tungstênio	106 266 Sg Saabórgio
			5	23 51 V Vanádio	41 93 Nb Nióbio	73 181 Ta Tântalo	10 5 262 Db Dúbnio
			4	22 48 Ti Titânio	40 91 Zr Zircônio	72 178 Hf Háfnio	104 261 Rf Rutherfódio
			ေ	21 45 Sc Escândio	39 89 Y Itrio	57-71 La-Lu	89-103 Ac-Lr
	2	4 9 Be Berílio	12 24 Mg Magnésio	20 40 Ca Cálcio	38 88 Sr Estôncio	56 137 Ba Bário	88 226 Ra Rádio
1	l l H Hidrogênio	3 7 Li Litio	11 23 Na Sódio	19 39 K Potássio	37 85 Rb Rubídio	55 133 Cs Césio	87 223 Fr Frâncio

Numero atomico	Massa atômica*	*														
_'		57 139	58 140	59 141	60 144	61 145	62 150	63 152	64 157	651 29	66 162	591 29	791 89	69 169	70 173	71 175
3	7	La	ů	Pr	PΝ	Pm	Sm		Б	$^{\mathrm{Tp}}$	Ď	Ho	\mathbf{Er}	Tm	$^{ m Ap}$	Lu
Símbolo	••	Lantânio	Cério	Praseodimio	Neodímio	Promécio	Samário		Gadolínio		Disprósio	Hólmio	Erbio	Túlio	Itérbio	Lutécio
		Série do	érie dos Actinid	eos												
	Litio	89 227	90 232	90 232 91 231 92 238	92 238	93 237	94 244	95 243	96 247	97 247	98 251	99 252	2 100 257	257 101 258	102 259	103 260
		Ac	Th	Pa	Ω	$N_{\mathbf{p}}$	$\mathbf{P}\mathbf{u}$	Am	Cm	Bk	Ct	Es	Fm	Md	%	Γ r
Nome		Actinio	Tório	Protactinio	Urânio	Netúmio	Plutônio	Americio	Cúrio	Berquelio	Califórnio	Einstênio		Mendelévio	Nobélio	Laurêncio

ARREDONDADOS PARA FACILITAR OS CÁLCULOS. ESTA TABELA PERIÓDICA É *OS VALORES DAS MASSAS ATÔMICAS DOS ELEMENTOS FORAM

Adaptado de TITO, Canto. Química na abordagem do cotidiano - Suplemento de Teoria e Tabelas para Consulta. Editora Moderna, 2007. EXCLUSIVA PARA ESTE PROCESSO SELETIVO E NÃO DEVE SER UTILIZADA PARA OUTRAS FINALIDADES.

QUÍMICA

Questão 01

Assinale o que for **correto**.

- 01) Orbitais moleculares podem se combinar para formar orbitais atômicos.
- 02) A configuração eletrônica da camada de valência do átomo mais eletronegativo da tabela periódica é $3s^2 3p^5$.
- 04) Uma ligação *pi* pode ser formada pela combinação de um orbital tipo *s* com dois orbitais do tipo *p*.
- 08) Quanto menor for a eletronegatividade de um elemento, maior será seu caráter metálico.
- 16) O diamante é uma substância formada por átomos de carbono ligados entre si por ligações covalentes.

Questão 02

Assinale o que for **correto**.

- 01) O rutênio possui maior densidade do que a prata.
- 02) O polônio possui maior volume atômico do que o chumbo.
- 04) O cobre possui menor afinidade eletrônica do que o arsênio.
- 08) O háfnio possui maior raio atômico do que o zinco.
- 16) A reatividade química dos metais aumenta de baixo para cima em uma mesma família da tabela periódica.

Questão 03

- 01) O ácido 2-hidróxi-3-cloro butanoico apresenta enantiômeros e diastereoisômeros.
- 02) Somente compostos com duplas ligações entre carbonos e de cadeia aberta podem apresentar isomeria geométrica.
- 04) O propen-2-ol e a propanona são isômeros de posição.
- 08) O 2,3-dihidróxi butano apresenta um isômero mesógiro, um dextrógiro, um levógiro e ainda pode apresentar mistura racêmica com 50% de dextrógiro e 50% de levógiro.
- 16) O composto butan-2-ol na conformação espacial abaixo é um isômero ótico do tipo S (sinister).

Assinale o que for correto.

- 01) É mais difícil a abertura de um determinado ciclo por adição em condições apropriadas quanto maiores as tensões de Baeyer deste ciclo.
- 02) A reação entre 1 mol de buta-1,3-dieno e 1 mol de Br₂ forma o but-2-eno como produto predominante.
- 04) A reação entre propeno e excesso de ácido sulfúrico concentrado produz o hidrogenossulfato de isopropila em uma adição que segue a regra de Markovnikov.
- 08) A desidratação intramolecular do pentan-2-ol catalisada por ácido sulfúrico forma o pent-2-eno, seguindo a regra de Saytzeff.
- 16) Em soluções ácidas, os aminoácidos adquirem carga positiva e, em soluções básicas, são encontrados na forma de ânions.

Questão 05

Assinale o que for **correto**.

- 01) A reação entre propano e cloreto de propanoila catalisada por cloreto de alumínio é uma alquilação de Friedel-Crafts e forma como produto o metil pentan-3-ona.
- 02) O produto da nitração do benzeno seguida de uma reação com cloreto de isopropila na presença de cloreto de alumínio é o m-isopropil-nitrobenzeno.
- 04) O grupamento –OH do fenol, por efeito de ressonância, ativa o anel aromático em reações de substituição eletrofílica aromática.
- 08) O grupo metóxi é metadirigente.
- 16) A fenilamina reage mais lentamente com Br₂/H₂O quando comparada com a reação do benzeno com Br₂/H₂O.

Questão 0

Assinale o que for correto.

- 01) Soluções aquosas de dicromato de potássio e permanganato de potássio, concentradas, em meio ácido e a quente, são fortes soluções redutoras.
- 02) A oxidação branda de um alceno forma um diol estável.
- 04) A oxidação energética do metil propeno forma dois ácidos carboxílicos.
- 08) A acetona é um líquido a temperatura ambiente que apresenta odor característico e é solúvel tanto em água como em solventes orgânicos.
- 16) A reação entre a butanona e o brometo de etil magnésio, em condições apropriadas, forma o 3-metil pentan-3-ol.

Questão 07

- 01) O polietileno é utilizado na fabricação de sacolas e brinquedos.
- 02) A baquelite é obtida pela condensação do hidróxi-benzeno com formaldeído.
- 04) O silicone é um polímero que contém silício.
- 08) O monômero que origina o poliestireno apresenta cadeia carbônica aromática.
- 16) Os polímeros polipropileno e politetrafluoretileno são sintetizados por meio de reações de condensação.

Assinale o que for correto.

- 01) Se compararmos moléculas com o mesmo número de átomos de carbono, podemos afirmar que o ponto de ebulição de álcoois é sempre menor do que o ponto de ebulição de cetonas.
- 02) Os fenóis são ácidos mais fortes do que os álcoois e, em solução alcalina, produzem o íon fenóxido.
- 04) O metil fenol é um ácido mais fraco do que o fenol.
- 08) Dadas duas soluções 0,01 mol/litro de cada ácido monoprótico, a do ácido benzóico terá pH menor do que a do ácido 4-clorobenzóico.
- 16) Sabões e detergentes possuem grande cadeia polar e extremidade apolar, podendo formar colóides protetores ou emulsões quando misturados com água e óleo.

Questão 09

Assinale o que for correto.

- 01) Um composto iônico, quando sólido, se organiza na forma de retículos cristalinos os quais são constituídos por estruturas tridimensionais de cátions e ânions se atraindo mutuamente.
- 02) O BeCl₂ e o BH₃ são compostos puramente iônicos.
- 04) O ClF₃ apresenta geometria molecular em forma de T, enquanto o SF₄ em forma de gangorra.
- 08) O ânion NO₃ apresenta geometria trigonal plana e hibridação do átomo central sp².
- 16) A ligação metálica só ocorre com metais da mesma família.

Questão 10

Assinale o que for correto.

01) A reação abaixo é um exemplo de isomerização de alcanos.

$$C_{12}H_{26} \xrightarrow{\text{catalisador}} C_{10}H_{22} + C_2H_4$$

- 02) Tanto o xisto betuminoso quanto o petróleo podem ser usados na produção de gasolina, óleo diesel e gás liquefeito.
- 04) O octano e o isooctano apresentam entre si isomeria plana, e o isooctano possui maior octanagem do que o octano.
- 08) A reforma catalítica de alcanos produz compostos aromáticos e libera gás hidrogênio.
- 16) O querosene é uma mistura de hidrocarbonetos obtida por meio da destilação fracionada do petróleo bruto.

Assinale o que for correto.

- 01) Os seguintes processos são exemplos de transformações químicas: a) queima do carvão; b) caramelização do açúcar e c) efervescência de um comprimido antiácido.
- 02) É possível classificar como sistemas heterogêneos todos os seguintes sistemas: a) ouro + areia; b) bronze; c) água líquida + gelo; d) ar atmosférico + poeira e e) granito.
- 04) A alotropia refere-se à formação de duas ou mais substâncias pelo arranjo de átomos de um mesmo elemento químico. São exemplos de alótropos: oxigênio e ozônio; gelo e água líquida; grafite e diamante; fósforo branco e fósforo vermelho.
- 08) Considerando que uma latinha de refrigerante vazia tenha em média 14 gramas, é possível inferir que existem aproximadamente 3 x 10²³ átomos de alumínio em cada lata.
- 16) Um átomo de alumínio (Z = 13) possui número de massa igual a 27. Consequentemente existem 40 nêutrons em seu núcleo.

Questão 12

Assinale o que for correto.

- 01) Um gás real pode apresentar o comportamento de um gás ideal em determinadas condições de temperatura e pressão.
- 02) A lei de Charles, também conhecida como lei de Charles e Gay-Lussac, refere-se a um processo isotérmico, em que o volume (V) de um gás é igual a sua temperatura absoluta (T) multiplicada por uma constante (C).
- 04) Em um parque de diversões, uma criança deixa escapar um balão contendo hélio em seu interior. Este, por sua vez, começa a subir. Admitindo-se condições isotérmicas, à medida que o balão ganha altitude, mais expandido ele ficará.
- 08) O ponto inicial da escala Kelvin é chamado de zero absoluto. Este ponto, na escala Celsius, corresponde a 273.16°C.
- 16) O gás dióxido de carbono se liquefaz quando resfriado sob determinadas condições de pressão. Considerando que nesta liquefação há perda de calor do sistema para as vizinhanças, é possível afirmar que se trata de um processo endotérmico.

Questão 1

- 01) Um sal normal é formado a partir da neutralização total, quando se reagem todos os íons H⁺ do ácido com todos os íons OH⁻ da base. Por definição, sais são compostos iônicos que possuem pelo menos um cátion diferente do H⁺ e um ânion diferente do OH⁻.
- 02) Com relação aos sistemas eletrolíticos, usando a definição de Arrhenius, a água bidestilada e deionizada, o NaCl sólido puro, o H₂SO₄ puro e o açúcar (sacarose) puro são maus condutores de corrente elétrica nas CNTP.
- 04) Na dissolução de 12000 moléculas de ácido fluorídrico, 960 moléculas se dissociam. Com relação ao grau de dissociação iônico, o ácido fluorídrico pode ser considerado um ácido forte.
- 08) Por definição, óxidos são compostos binários nos quais o oxigênio é o elemento mais eletronegativo, e são classificados como indiferentes quando não reagem com a água, com ácidos e com bases.
- 16) O Fe₂O₃ é classificado como um óxido duplo, ou seja, se comporta como se fosse formado por dois outros óxidos.

Assinale a(s) alternativa(s) correta(s).

- 01) Na combustão da gasolina (C₈H₁₈), que reage com O_{2(g)} produzindo CO_{2 (g)}, H₂O_(l) e energia, o volume de gás oxigênio gasto na queima de 2 litros deste combustível nas CNTP é de aproximadamente 3920 litros. Dado: densidade da gasolina = 0,8 grama/cm³.
- 02) Na combustão da gasolina (C_8H_{18}), que reage com $O_{2(g)}$ produzindo $CO_{2(g)}$, $H_2O_{(l)}$ e energia, a quantidade de dióxido de carbono gerado na queima de 2 litros deste combustível nas CNTP é de aproximadamente 5,0 kg. Dado: densidade da gasolina = 0,8 grama/cm³.
- 04) Considere a reação ácido-base $HNO_3 + KOH \rightarrow KNO_3 + H_2O$. Fazendo-se reagir 20 gramas de KOH com 20 gramas de HNO_3 , haverá um excesso de aproximadamente 2,2 gramas de KOH.
- 08) Considere que uma amostra contendo 90% de Al₂O₃ reage com HCl em excesso formando 65 gramas de AlCl₃ segundo a reação 1Al₂O₃ + 6HCl → 2AlCl₃ + 3H₂O. Calculando-se a proporção em massa de cada componente, é possível inferir que a massa da amostra contendo Al₂O₃ é aproximadamente 28 gramas.
- 16) A soma dos coeficientes estequiométricos da reação abaixo (<u>a</u>, <u>b</u>, <u>c</u> e <u>d</u>) balanceada com os menores números inteiros possíveis é igual a 14.

 \underline{a} Al(OH)₃ + \underline{b} H₂SO₄ $\rightarrow \underline{c}$ Al₂(SO₄)₃ + \underline{d} H₂O

Questão 15

- 01) Para que 12 litros de um certo refrigerante à base de cola sejam preparados, são adicionados 12.000 miligramas de ácido fosfórico (H₃PO₄) em um recipiente apropriado e completa-se o volume deste para 12 litros. Obtemos, assim, uma solução com concentração de 1 grama/litro de H₃PO₄.
- 02) Tendo-se 1 litro de uma solução com concentração 200 gramas/litro de CuSO₄ (densidade = 1,2 grama/cm³), a massa de água desta solução será de 1,4 quilograma.
- 04) Em uma solução de sulfato de sódio com concentração de 2 mol/litro, considerando-se a dissociação completa, a concentração de íons sulfato (SO₄²⁻) é 4 mol/litro.
- 08) Se uma amostra de água contém 2 ppm de um certo metal pesado, significa que em massa há 2 gramas desse metal em 1.000.000 de gramas de solução.
- 16) Comparando-se a volatilidade dos diferentes líquidos, tais como a água, o etanol e o éter dietílico, a água é o que apresenta maior ponto de ebulição; e o éter dietílico, o menor ponto de ebulição. Conclui-se, portanto, que a água é a que apresenta maior pressão de vapor.

- 01) Pelo enunciado da lei de Hess, o valor da variação de entalpia depende somente dos estados inicial, intermediário e final.
- 02) Na mudança de fase, à pressão constante de uma certa substância, há troca de calor com o ambiente. Um exemplo disso é a fusão de uma barra de gelo de 1 grama, na qual são absorvidos aproximadamente 330 joules. Considere a entalpia de fusão da água igual a 6 kJ.mol⁻¹.
- 04) Quando duas barras de cobre metálico de massas iguais, com uma delas estando a 298 K e a outra a 373 K, são colocadas em contato até atingirem o equilíbrio térmico, as temperaturas de ambas se modificam gradualmente até se igualarem. A energia transferida entre essas duas barras é denominada temperatura.
- 08) Em dias quentes de verão, o indivíduo procura se refrescar de diversas maneiras. Uma delas consiste no ato de se molhar. O processo de resfriamento do corpo se dá pela evaporação das moléculas de água sobre a pele molhada, as quais, passando para o estado gasoso, liberam calor, diminuindo a temperatura corpórea, causando a sensação de frescor.
- 16) Na formação de dióxido de carbono gasoso a partir de $CO_{(g)} + 1/2 O_{2(g)}$, a entalpia padrão de combustão é -283 kJ.mol^{-1} . A partir de carbono na forma grafite ($C_{(graf)}$) reagindo com oxigênio gasoso ($O_{2(g)}$) são formados $CO_{(g)} + 1/2 O_{2(g)}$ e a entalpia padrão de combustão é $-110,5 \text{ kJ.mol}^{-1}$. Com base nessas informações, a formação de CO_2 gasoso a partir de $C_{(graf)} + O_{2(g)}$ é um processo que libera calor.

- 01) O valor da constante de equilíbrio para uma reação, em uma dada temperatura, não depende das concentrações iniciais de reagentes e de produtos.
- 02) Aquecendo-se 1 mol de trióxido de enxofre em um recipiente fechado com capacidade de 5 litros, observou-se que esta substância apresentava-se 60% dissociada após o sistema ter atingido o equilíbrio. Utilizando-se dessas informações, infere-se que o grau de equilíbrio é 0,6.
- 04) Considere a seguinte reação balanceada: $2 SO_{2(g)} + 1 O_{2(g)} \implies 2 SO_{3(g)}$, a qual apresenta uma constante de equilíbrio igual a 9,9.10⁺²⁵. A partir do valor da constante de equilíbrio é possível afirmar que na situação de equilíbrio químico, há muito mais reagente do que produto.
- 08) A função de um catalisador é atuar diminuindo a energia de ativação de uma dada reação. A diminuição dessa energia de ativação significa que o equilíbrio da reação se desloca para a maior formação de produtos.
- 16) Para a reação abaixo é necessário trabalhar em temperaturas elevadas para que haja uma grande produção de alumina.

$$4Al_{(s)} + 3O_{2(g)} = 2Al_2O_{3(s)}$$
 $\Delta H = -3344 \text{ kJ}.$

Assinale o que for **correto**.

- 01) A rapidez de uma reação é também conhecida como velocidade média de uma reação, que é definida pela razão entre a massa de reagente de uma dada substância e o tempo.
- 02) Na formação do dióxido de carbono através da reação entre metano (CH_{4 (g)}) e oxigênio (O_{2 (g)}), observouse que a taxa de consumo de oxigênio foi de 4 mol.min⁻¹. Nesta avaliação, têm-se que a velocidade de consumo do metano é de 8 mol.min⁻¹.
- 04) A energia de ativação pode ser também interpretada como uma "proteção" para evitar que muitas reações ocorram, como a reação de formação da água $H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2 O_{(g)}$. Esta reação é explosiva e não se inicia espontaneamente devido à barreira da energia de ativação.
- 08) Em uma reação que ocorre em várias etapas, cada etapa tem a sua própria energia de ativação. A velocidade global da reação será igual à velocidade da etapa que tiver a maior energia de ativação, ou seja, a velocidade da etapa mais lenta.
- 16) Considere que a equação "A + 2 B → produtos" represente uma reação cuja equação de velocidade é dada por v = k[A][B]. Considere ainda que, quando a concentração de A é igual a 2 mol.litro⁻¹ e a de B é a velocidade 4 mol.litro⁻¹, da reação 1 mol.litro⁻¹.min⁻¹. A partir desses valores, a constante de velocidade calculada é igual a 0,125 litro.mol⁻¹.min⁻¹.

Questão

Assinale o que for **correto**.

- 01) Dados os K_a dos ácidos HF ($K_a = 6.7 \times 10^{-4}$) e HCN $(K_a = 4 \times 10^{-10})$, pode-se afirmar que o ácido fluorídrico é mais forte que o ácido cianídrico.
- 02) Considerando equilíbrios iônicos, os valores de K_a e K_b somente variam com a temperatura nos casos de reações com variação de entalpia positiva (endotérmicas) e com a pressão no caso de reações em estado gasoso.
- 04) A lei da diluição de Ostwald estabelece que à medida que a concentração em quantidade de matéria por litro de solução, de uma dada substância, diminui, o grau de ionização dessa substância aumenta.
- 08) Na dissolução do NaCl em água ocorre uma hidrólise onde se forma o NaOH_(aq).
- 16) Na hidrólise do NaCN_(aq) forma-se uma solução de pH alcalino.

Questão **20**

Assinale o que for **correto**.

- 01) A eletrólise é um processo espontâneo em que o cátion doa elétrons e o ânion recebe elétrons.
- 02) Para efetuar o processo de eletrólise é necessário que haja íons livres no sistema, o que pode ser conseguido pela fusão de uma substância iônica ou pela dissociação de certas substâncias em meio aquoso.
- 04) Na ordem de descarga de cátions, o íon H⁺ possui prioridade sobre os metais alcalinos e alcalinos terrosos, já que estes últimos possuem potencial de oxidação positivo.
- 08) A eletrólise pode ser usada para produzir metais com grande pureza, na ordem de 99,9 %.
- 16) A galvanização é uma técnica que consiste em dar revestimento metálico a uma determinada peça, colocando-a como cátodo (pólo negativo) em um circuito de eletrólise.

GABARITO 4

