
VESTIBULAR VERÃO 2014

Prova 3 - Química

QUESTÕES OBJETIVAS

N° DE ORDEM:

Nº DE INSCRIÇÃO:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos Nº DE ORDEM, Nº DE INSCRIÇÃO e NOME, que constam na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o Caderno de Questões antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 40 questões objetivas e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 2 horas e 30 minutos, após o início da resolução da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluso o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta para cada questão será a soma dos números associados às alternativas corretas. Portanto, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme o exemplo ao lado: questão 13, resposta 09 (soma, no exemplo, das alternativas corretas, 01 e 08).
- 8. Este Caderno de Questões não será devolvido. Assim, se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas, constante abaixo, e destaque-o para recebê-lo amanhã, ao término da prova.
- 9. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas, o Rascunho para Anotação das Respostas.
- 10. São de responsabilidade do candidato a leitura e a conferência de todas as informações contidas no Caderno de Questões e na Folha de Respostas.

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS - PROVA 3 - VERÃO 2014

N° DE ORDEM: NOME:

Química

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

UEM – Comissão Central do Vestibular Unificado

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

COM MASSAS ATÔMICAS REFERIDAS AO ISÓTOPO 12 DO CARBONO

48

Į.	Γ															_	
1 1 H Hidrogênio	1 2 nio										·	13	14	15	16	17	He Hélio
3 Li	7 4 9 Berilio	,——— ,										5 11 B Boro	6 12 Carbono	7 14 N Nitrogênio	8 16 O Oxigênio	9 19 F Flúor	10 20 Ne Neônio
11 2 Na Sódio	23 12 24 a Mg lio Magnésio	ဇ	4	2	9	7	8	6	10	1	12	13 27 Al Al Alumínio	14 28 Si Silício	15 31 P Fósforo	16 32 S Enxofre	17 35 CI Cloro	18 40 Ar Argônio
19 39 K Potássio	39 20 40 Ca Ssio Cálcio	21 45 Sc Escândio	22 48 Ti Titânio	23 51 V Vanádio	24 52 Cr Crômio	25 55 Mn Manganês	26 56 Fe Ferro	27 59 Co Cobalto	28 59 Ni	29 63 Cu Cobre	30 65 Zn Zinco	31 70 Ga Gálio	32 73 Ge Germânio	33 75 AS Arsênio	34 79 Se Selênio	35 80 Br	36 84 Kr Criptônio
37 85 Rb Rubídio	85 38 88 b Sr dio Estrôncio	39 89 Y (trio	40 91 Zr Zircônio	41 93 Nb Nióbio	42 96 Mo Molibdênio	43 99 Tc Tecnécio	44 101 Ru Rutênio	45 103 Rh Ródio	46 106 Pd Paládio	47 108 Ag Prata	48 112 Cd Cádmio	49 115 In Índio	50 119 Sn Estanho	51 122 Sb Antimônio	52 128 Te Telúrio	53 127 lodo	54 131 Xe Xenônio
55 13 CS Césio	133 56 137 S Ba sio Bário	57-71 La-Lu	72 178 Hf Háfnio	73 181 Ta Tântalo	74 184 W W Tungstênio	75 186 Re Rênio	76 190 OS Ósmio	77 192 	78 195 Pt Platina	79 197 Au Ouro	80 201 Hg Mercúrio	81 204 T T Tálio	82 207 Pb Chumbo	83 209 Bi Bismuto	84 209 PO Polônio	85 210 At Astato	86 222 Rn Radônio
87 22 Fr Frâncio	223 88 226 F Ra Cio Rádio	89-103 Ac-Lr	104 261 Rf Rutherfódio	105 262 Db Dúbnio	106 266 Sg Seabórgio	107 264 Bh Bóhrio	108 277 HS Hâssio	109 268 Mt Meitnério									

Laurêncio Lutécio 103 7 102 259 Nobélio 169 **101** 258 Mendelévio Ծ ⊠ 69 167 100 257 Férmio **E**rbio 89 252 165 Berquélio Califórnio Einstênio ES 운 66 67 251 162 86 99 247 159 ᄶ 97 65 157 96 247 Gadolínio S Cúrio <u>р</u>5 152 **95** 243 Amerício Európio Am 83 244 150 Plutônio Samário Sm Б 94 62 145 **N**etúnio 237 Promécio Pm ဗ္ဗ 238 144 Neodímio Urânio 92 8 Praseodímio 231 Protactínio 141 ቯ 20 6 Série dos Actinídeos 140 **90** 232 Tório Cério 139 Lantânio 89 227 Actínio 57

Massa atômica*

Número atômico

က

Símbolo-

Lítio

Nome

ARREDONDADOS PARA FACILITAR OS CÁLCULOS. ESTA TABELA PERIÓDICA É *OS VALORES DAS MASSAS ATÔMICAS DOS ELEMENTOS FORAM

Adaptado de TITO e CANTO. Química na abordagem do cotidiano - Suplemento de Teoria e Tabelas para Consulta. Editora Moderna, 2007. EXCLUSIVA PARA ESTE PROCESSO SELETIVO E NÃO DEVE SER UTILIZADA PARA OUTRAS FINALIDADES.

QUÍMICA

Questão 01

Sobre os principais fundamentos da teoria atômica de Dalton, assinale a(s) alternativa(s) **correta(s)**.

- 01) A massa fixa de um elemento pode combinar-se com massas múltiplas de outro elemento para formar substâncias diferentes.
- 02) O átomo é semelhante a uma massa gelatinosa carregada positivamente, tendo cargas negativas espalhadas nessa massa.
- 04) A carga positiva de um átomo não está distribuída por todo o átomo, mas concentrada na região central.
- 08) Existem vários tipos de átomos e cada um constitui um elemento químico. Átomos de um mesmo elemento químico são idênticos, particularmente em seu peso.
- 16) Toda matéria é composta por átomos, que são partículas indivisíveis e não podem ser criados ou destruídos.

Questão 02

Assinale o que for **correto**.

- 01) Átomos de um mesmo elemento químico podem ter o número de massa diferente em consequência do diferente número de nêutrons.
- 02) Elemento químico é um conjunto de átomos no qual cada átomo possui o mesmo número de prótons.
- 04) Por terem igual número de prótons e igual número de elétrons, os isótopos de um mesmo elemento químico têm, em geral, propriedades físicas e químicas semelhantes, exceto pela massa e por certas características radioativas.
- 08) O isótopo do carbono mais abundante na natureza é o que contém o número de nêutrons igual a oito.
- 16) Isótopos são átomos de um mesmo elemento químico e possuem número atômico diferente.

Questão 03

Assinale o que for correto.

- 01) Os números quânticos de spin variam de $-\ell$ a $+\ell$, passando por zero.
- 02) O número quântico magnético indica a energia do elétron no subnível.
- 04) O número quântico principal indica a energia do elétron no orbital.
- 08) O movimento do elétron ao redor do núcleo atômico gera um campo magnético externo, e o movimento do elétron em torno de seu próprio eixo gera outro campo magnético.
- 16) A região de máxima probabilidade de se encontrar o elétron em um subnível s é uma região esférica.

A respeito da estrutura das moléculas orgânicas e dos orbitais híbridos, assinale a(s) alternativa(s) **correta(s)**.

- 01) A ligação C-H na molécula de metano envolve um orbital híbrido do tipo sp³ do carbono e um orbital tipo s do hidrogênio.
- 02) Uma hibridização do tipo sp² envolve um orbital atômico do tipo s e dois orbitais atômicos do tipo p.
- 04) Na molécula de etileno ocorre uma hibridização do átomo de carbono do tipo sp.
- 08) Tanto na grafite quanto no diamante, as hibridizações do átomo de carbono são do tipo sp³.
- 16) A molécula de CO₂ é linear porque os orbitais híbridos do tipo sp do átomo de carbono são lineares, e não há influência de pares de elétrons não compartilhados.

Questão 05

A respeito das propriedades periódicas dos elementos, assinale a(s) alternativa(s) **correta(s**).

- 01) A reatividade química dos metais aumenta com o caráter metálico crescente.
- 02) Os elementos químicos de maior densidade estão localizados na região central inferior da tabela periódica, onde estão o ósmio, o irídio e a platina.
- 04) Os elementos que possuem os maiores volumes atômicos são os metais alcalinos, seguidos dos gases nobres.
- 08) Quanto menor for o raio atômico, mais próximo estará o elétron do núcleo e, portanto, maior será a energia necessária para removê-lo.
- 16) Em uma mesma família da tabela periódica, a afinidade eletrônica cresce de cima para baixo.

Questão 0

Assinale o que for **correto**.

- 01) A força de um ácido está diretamente associada com o número de átomos de hidrogênio em sua molécula. Portanto, o ácido ortofosfórico é mais forte do que o ácido sulfúrico.
- 02) Quando se faz borbulhar cloro gasoso em uma solução aquosa de NaBr, forma-se cloreto de sódio na solução e há liberação de bromo. Este é um exemplo de uma reação de deslocamento.
- 04) A concentração, em quantidade de matéria por massa, de uma solução preparada pela dissolução de 2 gramas de NaOH em 200 mililitros de água é de 0,00025 mols/kg. Dados: densidade da água = 1,0 grama/mililitro.
- 08) A mistura de 150 mililitros de uma solução aquosa de HCl de concentração 0,1 mol/litro com 350 mililitros de uma solução aquosa de NaOH de concentração 0,2 mol/litro resulta em uma solução de concentração igual a aproximadamente 0,03 mol/litro em NaCl.
- 16) Uma solução coloidal pode ter sua fase dispersa separada de sua fase de dispersão utilizando-se ultrafiltros.

A respeito de equilíbrio químico e equilíbrio iônico, assinale a(s) alternativa(s) **correta(s**).

- 01) Quanto maior for o valor da constante de equilíbrio de uma reação, maior será a velocidade dessa reação no sentido direto comparada à velocidade no sentido inverso.
- 02) O pOH de uma solução 0,001 mol/litro de um ácido que possui constante de ionização igual a 10% é igual a 10
- 04) O cianeto de potássio é um sal que, em meio aquoso, pode sofrer uma hidrólise básica e, portanto, originar uma solução aquosa básica.
- 08) Sob pressão constante, o rendimento da produção de $HCl_{(g)}$ em uma reação exotérmica partindo-se de $H_{2(g)}$ e $Cl_{2(g)}$ pode ser aumentado a partir da elevação da temperatura do sistema.
- 16) Em uma reação em equilíbrio hipotética que contém $A_{(aq)}$ e $D_{(aq)}$ como reagentes e $E_{(aq)}$ como produto, um aumento da concentração de $D_{(aq)}$, mantendo-se a pressão e a temperatura constantes, provoca uma elevação no valor da constante de equilíbrio, pois há um aumento da concentração do produto $E_{(aq)}$.

Questão 08

Assinale o que for correto.

01) Se a solubilidade de um sal hipotético AB_2 , que se dissocia segundo a equação abaixo, é 1×10^{-4} mol/litro, então seu produto de solubilidade é 4×10^{-12} (mol/litro)³.

$$AB_2 \longrightarrow AB + B$$

- 02) Sob pressão constante, a entalpia de uma reação pode variar em função da variedade alotrópica ou do estado de agregação, pois estas diferentes formas possuem diferentes conteúdos de energia.
- 04) De acordo com a reação abaixo, considerando ΔH = 136 kcal/mol, a entalpia padrão de formação da água líquida é igual a 68 kcal/mol.

$$2H_2O_{(1)} \longrightarrow 2H_{2(g)} + O_{2(g)}$$

- 08) Nos casos em que não é possível medir diretamente a entalpia de formação de uma substância, podemos utilizar dados de equações termoquímicas intermediárias, aplicando-se a Lei de Hess.
- 16) A energia da ligação H-H equivale a 436 kJ/mol. Isso significa que para separar 1 mol de ligações entre átomos de hidrogênio, no estado gasoso e em condições padrão, é necessário fornecer 436 kJ de energia ao sistema.

Questão 09

Sobre os conceitos de cinética química, assinale o que for **correto**.

- 01) A reação 2A + D \rightarrow A₂D é classificada como elementar se v = k [A]²[D].
- 02) Se a velocidade da reação 2A + 2D → E + G duplicar ao duplicar-se [A], mantendo-se [D] constante, então a reação é de segunda ordem em relação a A.
- 04) Se a reação global CaO + CO₂ \rightarrow CaCO₃ possuir a etapa intermediária lenta Ca(OH)₂ \rightarrow CaO + H₂O, então a lei de velocidade é v = k [CaO]²[CO₂][H₂O].
- 08) Considerando que a reação $N_2 + O_2 \rightarrow 2NO$ é elementar, sua molecularidade é igual a 2.
- 16) É possível aumentar o rendimento da reação $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ ($\Delta H < 0$) combinando-se um aumento da temperatura e da pressão do sistema, pois esse procedimento, feito com valores adequados de temperatura e pressão, afeta, neste caso, de forma favorável, o balanço entre a cinética e o equilíbrio químico da reação.

Considere uma pilha formada por eletrodos de manganês e de ferro imersos em soluções aquosas, respectivamente de sais de Mn²⁺ e Fe³⁺ (1 mol/litro a 25 °C, usando uma ponte salina), e assinale o que for **correto**.

Dados:
$$Mn^{2+}_{(aq)} + 2e^{-} \rightarrow Mn_{(s)}$$
 $E^{0}_{red} = -1,18 \text{ V}$
 $Fe^{3+}_{(aq)} + 3e^{-} \rightarrow Fe_{(s)}$ $E^{0}_{red} = -0,04 \text{ V}$

- 01) A força eletromotriz da pilha é -1,04 V.
- 02) O ânodo da pilha é o manganês.
- 04) No eletrodo de ferro ocorre uma semirreação de redução.
- 08) A pilha pode ser representada por: Mn^{0} (s) $|Mn^{2+}(aq)| |Fe^{3+}(aq)| Fe^{0}$ (s)
- 16) A reação global de funcionamento da pilha é uma reação reversível e, portanto, ao atingir o equilíbrio, a voltagem da pilha será igual a zero.

Questão 11

Assinale a(s) alternativa(s) **correta(s)**.

- 01) Os processos mecânicos de separação, levigação e peneiramento têm como princípios de funcionamento, respectivamente, a diferença de densidade e a diferença de tamanho entre partículas sólidas.
- 02) Uma mistura azeotrópica entre água e etanol não pode ser separada por destilação simples, mas sim por destilação fracionada.
- 04) Numa torre de destilação fracionada de petróleo, os gases são retirados na parte superior da torre, e óleos pesados e asfalto, na parte inferior.
- 08) A recristalização é uma técnica de purificação de substâncias sólidas que leva em consideração a solubilidade da substância em função da temperatura do meio na qual está dissolvida.
- 16) A liquefação pode ser usada para extrair nitrogênio líquido do ar atmosférico.

Questão

Na formação das moléculas de ácido clorídrico, ácido hipocloroso, ácido clórico e de ácido perclórico podem participar os isótopos de ¹H, ²H, ³H, ¹⁶O, ¹⁷O, ¹⁸O, ³⁵Cl e ³⁷Cl. Com relação às massas moleculares das moléculas formadas, assinale o que for **correto**:

- 01) A menor massa molecular é 36u e a maior massa molecular é 112u.
- 02) A massa molecular do ácido hipocloroso pode variar entre 52u e 58u.
- 04) As moléculas de ²H³⁵Cl¹⁷O e ¹H³⁷Cl¹⁶O apresentam número de nêutrons totais diferente.
- 08) O número de prótons em moléculas de ácido perclórico com diferentes massas moleculares é o mesmo.
- 16) Compostos de mesma fórmula molecular, mas com massa molecular diferente, apresentam o mesmo número de elétrons e número de nêutrons diferente.

Uma garrafa metálica aberta, de volume interno de 1 (um) litro, é colocada em um sistema onde sua temperatura pode ser alterada (aquecida ou resfriada), sem que seu volume interno se altere. Assinale a(s) afirmação(ões) **correta(s)** sobre esse sistema, inicialmente colocado na temperatura de 27 °C, nos experimentos descritos abaixo, realizados ao nível do mar, onde a pressão atmosférica é 1,0 atm, ou na cidade de La Paz, na Bolívia, onde a pressão atmosférica é de ~0,75 atm. Dados: R = 0,082 (atm.litro)/(mol.K).

- 01) Tanto ao nível do mar como em La Paz, constatou-se que a quantidade de gás dentro da garrafa diminui com o seu aquecimento.
- 02) Ao se aquecer a garrafa ao nível do mar até 127 °C, a quantidade de ar dentro da garrafa será aproximadamente igual à quantidade de ar dentro da garrafa colocada em La Paz na temperatura de 27 °C.
- 04) Tanto ao nível do mar como em La Paz, ao se aquecer a garrafa até a temperatura de 250 °C, tampála e resfriá-la à temperatura ambiente, a pressão do gás no interior da garrafa será menor do que a pressão atmosférica.
- 08) Na temperatura de 0 °C, o número de moléculas de ar no interior da garrafa colocada ao nível do mar ou colocada na cidade de La Paz é idêntico.
- 16) O número de moléculas de ar dentro da garrafa a 27 °C dividido pelo número de moléculas de ar dentro da garrafa a 227 °C não será o mesmo para experimentos feitos ao nível do mar ou em La Paz.

Questão 1

Considerando os tipos de cadeias carbônicas, assinale o que for **correto.**

- 01) A molécula de éter dietílico apresenta cadeia aberta, somente carbonos primários, e não possui heteroátomo.
- 02) A molécula de terc-butanol apresenta carbonos primário e terciário, cadeia aberta, e não apresenta heteroátomo na cadeia carbônica.
- 04) A molécula de 3-etil-non-4-en-5-ol é acíclica, ramificada, insaturada e homogênea.
- 08) A molécula de fenol apresenta anel benzênico e cadeia heterogênea.
- 16) É possível construir quatro moléculas diferentes numa estrutura carbônica que possui oito átomos de carbono e que apresenta um anel benzênico, sendo que essas moléculas são isômeros.

Questão 15

O rótulo de um produto químico orgânico puro aponta a fórmula estrutural $C_{18}NO_2Cl$, sendo que o número de hidrogênios presentes estava rasurado. Baseando-se nessa fórmula, assinale a(s) alternativa(s) **correta**(s) quanto à descrição das possíveis funções orgânicas dessa molécula.

- 01) A molécula pode ser aromática e apresentar função ácido carboxílico.
- 02) A molécula pode apresentar ao mesmo tempo função cetona e função amida.
- 04) Quanto maior o número de insaturações na molécula, menor será o número de átomos de hidrogênio na fórmula estrutural.
- 08) O cloro pode estar presente na molécula como um heteroátomo ou fazendo parte de uma função cloreto de acila.
- 16) A molécula pode apresentar uma função amina e uma função éster.

Observe a lista de moléculas orgânicas abaixo e assinale a(s) alternativa(s) **correta(s)** a respeito da isomeria.

butan-1-ol, isopropanol, éter dietílico, propanona, n-propanol, ciclopropano, propanal, propeno, metóxipropano, 1,2-dicloroeteno.

- 01) O propanol e o propanal são isômeros de cadeia.
- 02) Há pelo menos 2 pares de moléculas que podem ser classificados como isômeros funcionais.
- 04) Somente uma molécula pode apresentar isomeria geométrica.
- 08) As moléculas butan-1-ol, éter dietílico e metóxipropano podem ser classificadas, duas a duas, como isômeros de função duas vezes, e como metâmeros uma vez.
- 16) Nenhuma das moléculas apresenta isomeria óptica.

Questão 17

A respeito de reações de oxidação e redução de compostos orgânicos, assinale a(s) alternativa(s) **correta(s)**.

- 01) O número de oxidação do carbono em compostos orgânicos pode variar de -4 a +4, dependendo da eletronegatividade dos elementos ligados a esse átomo de carbono.
- 02) Uma solução de permanganato de potássio concentrado em meio ácido oxida a molécula de 2-buteno a 2,3-butanodiol.
- 04) Uma solução de dicromato de potássio concentrado em meio ácido oxida álcoois primários a ácido carboxílico e álcoois secundários a cetonas.
- 08) Aldeídos podem ser oxidados a ácido carboxílico mesmo em soluções oxidantes fracas, como podem ser reduzidos a álcoois primários em solução redutora.
- 16) O ácido butanodioico pode ser produzido a partir do ciclobutano em solução de HNO₃ concentrado.

Questão

Assinale a(s) alternativa(s) **correta(s)** a respeito de reações de substituição em alcanos e aromáticos.

- 01) A reação de cloração do metilbutano apresentará uma única molécula orgânica como produto final.
- 02) Moléculas que apresentam carbonos primários e terciários apresentarão maior grau de substituição por bromação no carbono primário.
- 04) Na halogenação de aromáticos é necessário o uso de catalisadores como o AlCl₃ ou o FeBr₃.
- 08) A halogenação de alcanos ocorre por meio da formação de radicais livres, e estes são formados a partir de irradiação com luz de frequência adequada ou por aquecimento.
- 16) O ácido sulfúrico fumegante é utilizado na sulfonação de aromáticos, e o ácido sulfúrico concentrado age como catalisador na reação de nitração de aromáticos em presença de ácido nítrico.

A respeito de gorduras, óleos vegetais, biodiesel, ácidos graxos e sabões, assinale a(s) alternativa(s) **correta(s)**.

- 01) As gorduras trans são produzidas a partir de um processo de oxidação catalítica.
- 02) Sabões podem ser produzidos a partir de uma reação ácido-base entre uma base forte e um ácido graxo.
- 04) As gorduras de origem animal são constituídas essencialmente de ácidos graxos saturados, e os óleos vegetais apresentam cadeias saturadas, monoinsaturadas e poli-insaturadas.
- 08) Óleos vegetais poli-insaturados são sólidos e a partir do processo de hidrogenação se tornam líquidos, em temperatura ambiente.
- 16) A partir de uma reação de transesterificação é possível produzir biodiesel. Para isso, reage-se um óleo vegetal na presença de um álcool de cadeia curta e de um catalisador.

Questão 20

A respeito dos polímeros etilênicos, assinale a(s) alternativa(s) **correta(s**).

- 01) O polietileno é produzido a partir do monômero acetileno por meio de uma reação de substituição.
- 02) Os polímeros de adição apresentam todas as cadeias poliméricas com mesmo valor de massa molecular.
- 04) No poliestireno o anel aromático faz parte da cadeia principal do polímero.
- 08) O polipropileno pode ser produzido a partir dos monômeros propileno ou 1,3-dimetilbutadieno, em uma reação de condensação.
- 16) O teflon é produzido a partir do tetrafluoretileno, em uma reação de adição.

UEM/CVU

