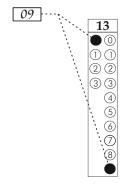


Prova 3 – Química

QUESTOES OBJETIVAS


Nº DE ORDEM:

Nº DE INSCRIÇÃO:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos Nº DE ORDEM, Nº DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o Caderno de Provas antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 20 questões objetivas e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 2 horas e 30 minutos após o início da resolução da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluso o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta correta será a soma dos números associados às alternativas corretas. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme o exemplo ao lado: questão 13, resposta 09 (soma das alternativas 01 e 08).
- 8. Se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas, constante abaixo, e destaque-o, para retirá-lo hoje, nesta sala, no horário das 13h15min às 13h30min, mediante apresentação do documento original de identificação do candidato. Após esse período, não haverá devolução.
- 9. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS — PROVA 3 — INVERNO 2013

N° DE ORDEM:

NOME:

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

QUÍMICA

Questão 01

A respeito dos compostos orgânicos a seguir, assinale o que for **correto**.

- (A) hexanol
- (B) metóxi-pentano
- (C) hexano
- (D) 2,2-dimetilbutano
- (E) 1-cloro-pentano
- (F) cicloexanol
- 01) Não é possível separar os compostos (C) e (D) por destilação fracionada, pois eles têm o mesmo ponto de ebulição.
- 02) Apenas dois dos compostos listados podem formar ligações de hidrogênio com a água.
- 04) Quando se efetua a destilação fracionada de uma mistura dos compostos listados, o hexanol é destilado por último.
- 08) O composto (E) é bastante solúvel em água, pois possui um átomo eletronegativo em sua estrutura.
- 16) As interações intermoleculares que podem ocorrer no composto (B) são dipolo-dipolo e van der Waals.

Questão 02

A respeito dos compostos orgânicos a seguir, assinale o que for **correto**.

- (A) etanol
- (B) propan-2-ol
- (C) 2-metil-butan-2-ol
- 01) Somente dois dos compostos listados sofrem oxidação com dicromato de potássio em meio ácido.
- 02) Somente um dos compostos listados pode ser obtido a partir da fermentação alcoólica da glicose.
- 04) A desidratação intramolecular do composto (A) gera dois produtos orgânicos diferentes.
- 08) O composto (C) pode ser obtido a partir da hidratação do 2-metil-but-2-eno na presença de ácido sulfúrico.
- 16) O composto (B) pode ser obtido a partir da redução da propan-2-ona.

Questão 03

- 01) O etanoato de etila apresenta cadeia linear, homogênea e insaturada.
- 02) Fenóis são compostos que possuem um grupo OH ligado a um átomo de carbono sp³.
- 04) Hidrocarbonetos são compostos formados exclusivamente por átomos de carbono e de hidrogênio.
- 08) O cloreto de etilmagnésio, CH₃CH₂MgCl, é um composto organometálico.
- 16) A etil-fenil-amina é uma amina secundária.

O cianeto de hidrogênio (HCN) é um ácido fraco em meio aquoso e possui grau de ionização desprezível em relação ao número de moléculas não ionizadas. Sabendose que, a 25 °C, o HCN apresenta $Ka = 6,4x10^{-10}$, assinale o que for **correto**.

Dado: $\sqrt{6,4} = 2,53$.

- 01) Duas soluções de concentrações de HCN_(aq) iguais a 0,1 mol/L e 1,0 mol/L, ambas a 25 °C, possuem o mesmo valor do grau de ionização.
- 02) Uma solução aquosa de ácido cianídrico a 0,1 mol/L apresenta grau de ionização igual a 8 x 10⁻² %.
- 04) Se forem adicionadas pequenas quantidades de KCN sólido a qualquer solução de HCN_(aq) a 25 °C, o valor do Ka permanece aproximadamente constante.
- 08) A cada 100.000 moléculas de HCN em solução aquosa a 25 °C, com concentração 0,01 mol/L, 25 moléculas estarão ionizadas.
- 16) Para ácidos fracos em meio aquoso, o Ka é numericamente igual ao grau de ionização, porém com sinal algébrico contrário.

Questão 05

Uma mistura de 2,0 mols de $CO_{(g)}$ e 4,0 mols de $H_{2(g)}$ é colocada em um recipiente fechado de 2,0 L a certa temperatura.

Quando a reação

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)}$$

atinge o equilíbrio, 1,0 mol de CH₃OH_(g) é produzido. A partir dessas informações, assinale o que for **correto**.

- 01) No equilíbrio, as concentrações de $CO_{(g)}$ e de $H_{2(g)}$ são 1 mol/L e 2 mol/L, respectivamente.
- 02) A constante de equilíbrio (Kc) para a reação, nessas condições, é igual a 1 mol⁻²L².
- 04) No equilíbrio, a velocidade da reação direta é igual a zero.
- 08) Quando 2,0 mols de $CO_{(g)}$ são adicionados ao sistema em equilíbrio, ocorre uma mudança na constante de equilíbrio para 2 mol $^{-2}L^2$.
- 16) Para a reação acima, o valor da constante de equilíbrio em termos da pressão (Kp) é diferente do valor da constante de equilíbrio (Kc).

Questão 0

- 01) Quando se forma um cátion a partir de um átomo isolado no estado neutro, os elétrons perdidos são sempre aqueles que estão no subnível de maior energia.
- 02) Massa atômica e calor específico são exemplos de propriedades aperiódicas.
- 04) O período em que o elemento químico está situado indica o seu número de camadas eletrônicas.
- 08) O lítio tem a maior energia de ionização dos metais alcalinos.
- 16) Um átomo cujo número atômico é igual a vinte tem dois elétrons desemparelhados na camada de valência.

Considere as reações termoquímicas abaixo (a 25 °C e 1 atm) e assinale o que for **correto**.

$$\begin{split} S_{(s)} + O_{2(g)} &\to SO_{2(g)} \quad \Delta H_f = \text{-}297 \text{ kJ/mol} \\ C_{(s)} + O_{2(g)} &\to CO_{2(g)} \quad \Delta H_f = \text{-}394 \text{ kJ/mol} \\ C_{(s)} + 2S_{(s)} &\to CS_{2(l)} \quad \Delta H_f = \text{+}88 \text{ kJ/mol} \end{split}$$

01) A variação de entalpia para a reação abaixo é igual a -1076 kJ/mol:

$$CS_{2(1)} + 3O_{2(g)} \rightarrow CO_{2(g)} + 2SO_{2(g)}$$
.

- 02) A energia envolvida na reação abaixo é exotérmica: $CO_{2(g)}+2SO_{2(g)} \rightarrow CS_{2(g)}+3O_{2(g)}$.
- 04) A reação de formação de um mol de $CO_{2(g)}$ libera maior quantidade de energia do que a reação de formação de um mol de $SO_{2(g)}$.
- 08) A energia envolvida na reação de formação de 2 mols de $CO_{2(s)}$, a partir de carvão e de oxigênio, é 788 kJ/mol.
- 16) A reação de formação do $CS_{2(l)}$, a partir de carvão e de enxofre, é endotérmica.

Questão 08

Assinale o que for **correto**.

- 01) Reações do tipo AB + CD → AD + CB podem ser caracterizadas como reações de dupla troca.
- 02) O número de oxidação mais comum do hidrogênio em seus compostos é +1, porém existem também os hidretos metálicos nos quais o Nox do hidrogênio é -1.
- 04) A massa de NO liberada pela reação de 378 g de Cu com excesso de ácido é de 180 g, na seguinte reação: 3Cu + 8HNO₃ → 3Cu(NO₃)₂ + 2NO + 4H₂O.
- 08) O número de oxidação do átomo de fósforo no Ca₃(PO₄)₂ é igual a +10.
- 16) Os coeficientes estequiométricos **a**, **b** e **c**, em menores números inteiros, da reação $\mathbf{a}H_2O_2 \rightarrow \mathbf{b}H_2O + \mathbf{c}O_2$, são 1, 1 e 2, respectivamente.

Questão 0

- 01) Uma substância formada pela ligação química entre um elemento da família 2 com um elemento da família 17 deve ser uma substância molecular.
- 02) As substâncias iônicas possuem elevados pontos de fusão e de ebulição.
- 04) Em uma liga metálica de Na e K, podem ser encontradas ligações metálicas entre átomos do mesmo elemento e ligações covalentes entre Na e K.
- 08) No íon NO₃⁻, existem quatro ligações covalentes.
- 16) Na molécula de NH₄Cl, podem ser encontradas ligações dos tipos iônica e covalente.

Assinale o que for correto.

- 01) A escala de massas atômicas é baseada no isótopo mais comum do carbono, com número de massa igual a 12, ao qual foi atribuída a massa de 12 u.
- 02) A massa atômica do magnésio é metade da massa atômica do titânio, que, por sua vez, é 48 vezes maior do que a massa de $\frac{1}{12}$ do $^{12}_{6}$ C.
- 04) Em 1 mol de iodo molecular, existem 2 mols de átomos de iodo.
- 08) O volume atômico de um dado elemento corresponde ao volume ocupado por um átomo desse elemento.
- 16) O volume molar de um gás é o volume ocupado por um mol desse gás a uma dada pressão e a uma dada temperatura.

Questão 11

- O 1,3,5,7-ciclooctatetraeno, também conhecido como [8]-anuleno, não é um composto aromático, diferentemente do benzeno. A respeito dessas informações, assinale o que for **correto**.
- 01) O [8]-anuleno obedece à regra de Huckel.
- 02) O [8]-anuleno descora uma solução de Br₂ em CCl₄.
- 04) O benzeno é mais estável do que o [8]-anuleno, devido aos elétrons das ligações duplas do benzeno estarem deslocalizados.
- 08) O comprimento das ligações entre dois átomos de carbono no [8]-anuleno é igual ao comprimento das ligações entre dois átomos de carbono no benzeno.
- 16) Todos os compostos aromáticos derivados do benzeno são tóxicos.

Questão 1

Verifica-se, pela análise elementar de um composto orgânico desconhecido, que ele contém 69,8% de carbono, 11,6% de hidrogênio e 18,6% de oxigênio. Com base nessas informações, assinale o que for **correto**.

- 01) A fórmula mínima do composto é C₅H₁₀O.
- 02) Se a fórmula molecular é igual à fórmula mínima, o composto pode ser um ácido carboxílico.
- 04) Se a fórmula molecular é igual à fórmula mínima, o composto pode ser o pent-3-en-2-ol.
- 08) Se a massa molar é 86 g/mol, o composto pode ser a pentan-3-ona.
- 16) O composto pode ser uma amida.

O policloreto de vinila (PVC) é um dos mais importantes polímeros comerciais. O PVC é preparado pela polimerização do cloreto de vinila (C₂H₃Cl), que, por sua vez, é sintetizado em um processo de duas etapas que envolvem os seguintes equilíbrios:

Etapa 1:
$$C_2H_{4(g)} + Cl_{2(g)} \iff C_2H_4Cl_{2(g)}$$

Etapa 2:
$$C_2H_4Cl_{2(g)} \rightleftharpoons C_2H_3Cl_{(g)} + HCl_{(g)}$$

A partir dessas informações, assinale o que for correto.

- 01) O produto da etapa 1 é o 1,2-dicloroetano.
- 02) Na etapa 1, ocorre uma reação de adição de halogênios a alcenos.
- 04) O PVC é um polímero de adição utilizado na fabricação de tubos para encanamentos.
- 08) Para aumentar a produção do cloreto de vinila, a indústria deve realizar a reação descrita na etapa 2 em reatores a altas pressões.
- 16) O cloreto de vinila é uma molécula linear.

Questão 14

Assinale o que for correto.

- 01) A isomeria cis-trans pode ocorrer tanto em compostos orgânicos que apresentam somente ligações duplas e simples quanto em compostos orgânicos que apresentam somente ligações triplas e simples.
- 02) Uma solução contendo dois enantiômeros, na mesma concentração, não desvia o plano da luz polarizada.
- 04) Os isômeros geométricos possuem propriedades físicas e químicas iguais.
- 08) O ponto de ebulição do (+)-2-metil-butan-1-ol é 128 °C, logo o ponto de ebulição do (-)-2-metil-butan-1-ol também é 128 °C.
- 16) A isomeria espacial divide-se em três: geométrica, cis-trans e tautomeria.

Questão 15

De acordo com o modelo atômico de Niels Bohr ou suas aplicações na explicação de fenômenos relacionados à emissão e à absorção de luz pela matéria, assinale o que for **correto**.

- 01) Quando absorve luz ultravioleta, um elétron, em um átomo, pode passar de um nível para outro de maior energia.
- 02) O átomo é formado por uma esfera de carga elétrica positiva, possuindo elétrons incrustados em sua superfície.
- 04) O elétron, movendo-se em uma órbita estacionária, pode emitir ou absorver energia, dependendo das características do átomo.
- 08) A cor observada na queima de fogos de artificio é resultado da emissão de radiação infravermelha por moléculas inorgânicas.
- 16) Alguns interruptores de luz brilham no escuro, porque são feitos de materiais que absorvem radiação e emitem de volta luz visível.

GABARITO 4

Catalisadores e inibidores são substâncias específicas que atuam sobre determinada reação, modificando a energia necessária para que os reagentes atinjam o estado ativado; portanto alteram a velocidade de uma reação. Outras substâncias importantes no estudo cinético são os promotores e os venenos. A reação genérica I, em determinadas condições de temperatura, de pressão e de concentração de reagentes e de produtos, ocorre com uma velocidade de 5 mol/L.s. Nas mesmas condições, mas na presença das substâncias A, B, C e D, a velocidade da reação se modifica, conforme as reações II, III, IV e V. Com base nessas informações, assinale o que for **correto**. Considere que cada reação pode ter apenas uma substância como catalisador.

$$X + Y \longrightarrow Z + W$$
 $v = 5 \text{ mol/L.s}$ (I)
 $X + Y \xrightarrow{A} Z + W$ $v = 8 \text{ mol/L.s}$ (II)
 $X + Y \xrightarrow{B} Z + W$ $v = 3 \text{ mol/L.s}$ (III)
 $X + Y \xrightarrow{A+C} Z + W$ $v = 12 \text{ mol/L.s}$ (IV)
 $X + Y \xrightarrow{A+D} Z + W$ $v = 7 \text{ mol/L.s}$ (V)

- 01) A substância A é um inibidor da reação.
- 02) A substância C é um promotor para o catalisador A.
- 04) A substância **D** é um veneno para o catalisador **A**.
- 08) Na presença apenas da substância **C**, a velocidade da reação deve ser entre 8 e 12 mol/L.s.
- 16) A ação conservante de certas substâncias adicionadas a produtos perecíveis, como alimentos ou bebidas, pode estar relacionada à ação de inibidores.

Questão 1

- 01) As fórmulas dos óxidos de ferro III e de ferro II são Fe₂O₃ e FeO, respectivamente.
- 02) O BaO é um óxido, e o BaO₂ é um peróxido.
- 04) O CaO não é extraído diretamente da natureza; ele é produzido a partir da decomposição térmica do calcário, cuja fórmula é CaCO₃.
- 08) No dióxido de enxofre, existem apenas ligações covalentes polares.
- 16) O monóxido de manganês é um óxido ácido, e o trióxido de manganês é um óxido básico.

Assinale o que for correto.

18

- 01) Uma solução aquosa de ácido nítrico é uma solução eletrolítica.
- 02) Uma solução é composta de uma fase dispersante, chamada de soluto, e de uma fase dispersa, chamada de solvente.
- 04) A água pura pode entrar em ebulição a 60 °C.
- 08) A pressão de vapor de 50 litros de metanol, contido em um recipiente fechado com capacidade de 100 litros, a 25 °C, é maior do que a pressão de vapor de 25 litros de metanol, contido em um recipiente fechado de capacidade de 75 litros, a 25 °C.
- 16) O álcool líquido com título em volume até 54% (ou 54° GL), cuja comercialização em supermercados é permitida atualmente, apresenta 64° INPM (título em massa).
 - Dados: densidade do álcool = 0,8 g/mL e da água = 1,0 g/mL.

Questão 19

Considerando que os gases mencionados abaixo comportam-se como gases ideais, assinale o que for **correto**.

Dado: $R = 0.082 \text{ atm.L.mol}^{-1} \text{K}^{-1}$.

- 01) A densidade absoluta de um gás é inversamente proporcional à temperatura em que se encontra esse gás.
- 02) A pressão parcial exercida por um gás é diretamente proporcional à massa molar desse gás.
- 04) O volume ocupado por 22 g de $CO_{2(g)}$ a uma temperatura de 35 °C e 0,5 atm de pressão é, aproximadamente, 25,25 litros.
- 08) Uma transformação isotérmica de um determinado gás ocorre à temperatura constante, e as variações de volume são inversamente proporcionais às variações de pressão.
- 16) Em uma transformação isocórica de um determinado gás, um resfriamento provoca uma diminuição da energia cinética média das moléculas desse gás.

Questão 20

- 01) Os estados físicos apresentados pela matéria também podem ser chamados de estados de agregação ou de fases de agregação.
- 02) As características macroscópicas do estado sólido são as seguintes: possuir forma própria e volume variável; não sofrer compressão; não se mover espontaneamente; poder escorrer.
- 04) A passagem direta do estado de vapor para o estado sólido é chamada de sublimação.
- 08) O estado líquido, quando analisado microscopicamente e comparado com o estado gasoso, apresenta partículas com maior organização e com forças de atração mais intensas.
- 16) Fusão, vaporização e sublimação são mudanças de estado que ocorrem endotermicamente ou exotermicamente.

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS COM MASSAS ATÔMICAS REFERIDAS AO ISÓTOPO 12 DO CARBONO

18

4 1, 0	20 e	40 1	84 nio	31 io	22 io	
2 4 He	10 20 Ne Neônio	18 40 Ar Argônio	36 Kr	54 131 Xe Xenônio	86 222 Rn Radônio	
17	$egin{array}{ccc} oldsymbol{9} & 19 & & & & & & & & & & & & & & & & & $	17 35 CI Cloro	35 80 Br Bromo	53 127 I Iodo	85 210 At Astato	
16	8 16 O Oxigênio	16 32 S Enxofre	34 79 Se Selênio	52 128 Te Telúrio	84 209 Po Polônio	
15	7 14 N	15 31 P Fósforo	33 75 AS Arsênio	51 122 Sb Antimônio	83 209 Bi Bismuto	
14	6 12 C	14 28 Si Silício	32 73 Ge Germânio	50 119 Sn Estanho	82 207 Pb Chumbo	
13	5 11 B Boro	13 27 Al Alumínio	31 70 Ga Gálio	49 115 In Índio	81 204 T1 Tálio	
		12	30 65 Zn Zinco	48 112 Cd Cádmio	80 201 Hg Mercúrio	
		11	29 63 Cu Cobre	$egin{array}{ccc} f 47 & 108 \ f A f g \ & ext{Prata} \end{array}$	79 197 Au Ouro	
		10	28 59 Ni Níquel	46 106 Pd Paládio	78 195 Pt Platina	
		6	27 59 Co Cobalto	45 103 Rh Ródio	77 192 Ir Irídio	109 268 Mt Meitnério
		&	2 6 56 Fe Ferro	44 101 Ru Rutênio	76 190 Os Ósmio	108 277 Hs Hâssio
		7	25 55 Mn Manganès	43 99 Tc	75 186 Re Rênio	107 264 Bh Bóhrio
		9	24 52 Cr Crômio	42 96 Mo	74 184 W Tungstênio	106 266 107 264 Seaborgio Bhrio Bóhrio
		જ	23 51 V	41 93 Nb	73 181 Ta Tântalo	105 262 Db Dúbnio
		4	22 48 Ti Titânio	40 91 Zr Zircônio	72 178 Hf Háfnio	104 261 Rf Rutherfódio
		3	21 45 Sc Escândio	39 89 Y Ítrio	57-71 La-Lu	89-103 Ac-Lr
7	4 9 Be Berílio	12 24 Mg Magnésio	20 40 Ca	38 88 Sr Estrôncio	56 137 Ba Bário	88 226 Ra Rádio
1 1 H Hidrogênio	3 7 Li Lítio	11 23 Na Sódio	19 39 K Potássio	37 85 Rb Rubídio	55 133 Cs Césio	87 223 Fr Frâncio

Massa atômica*	۱*															_
\\	57 139	58 140	139 58 140 59 141 60 1	60 144	61 145	62 150	61 145 62 150 63 152 64 157 65 159 66 162 67 165 68 167 69 169 169 70 173 71 175	64 157	65 159	66 162	67 165	68 167	69 169	70 173	71 175	
_	La	و د	Pr	PZ	Pm	Sm	Eu	P5	$\mathbf{T}\mathbf{p}$	Dy	\mathbf{H}_{0}	Εŗ	Tm	$\mathbf{A}\mathbf{p}$	Lu	
	Lantânio	Cério	Praseodímio	Neodímio	Promécio	Samário	Európio	Gadolínio	l'érbio	Disprósio	Hólmio	Érbio	Túlio	Itérbio	Lutécio	
	Série de	érie dos Actiníd	leos							•	,	,				
	89 227		90 232 91 231 92 238	92 238	93 237	94 244	93 237 94 244 95 243 96 247 97 247 98 251 99 252	96 247	97 247	98 251	99 252	100 257	100 257 101 258 102 259	102 259		
	Ac	$\mathbf{T}\mathbf{h}$	Pa	n	ď	Pu	Am	Cm	Bk	Ct	Es	Fm	Md No	N _o		
	Actínio	Tório	Protactínio	Urânio	Netúnio	Plutônio		Cúrio	Berquélio	Califórnio	Einstênio	Férmio	Mendelévio	Nobélio	Laurêncio	

*OS VALORES DAS MASSAS ATÔMICAS DOS ELEMENTOS FORAM ARREDONDADOS PARA FACILITAR OS CÁLCULOS. ESTA TABELA PERIÓDICA É EXCLUSIVA PARA ESTE VESTIBULAR E NÃO DEVE SER UTILIZADA PARA OUTRAS FINALIDADES.

Adaptado de TITO, Canto. Química na abordagem do cotidiano - Suplemento de Teoria e Tabelas para Consulta. Editora Moderna

GABARITO 4

Nome

Número atômico