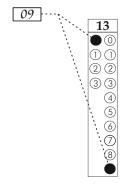


Prova 3 – Física

QUESTÕES OBJETIVAS


Nº DE ORDEM:

Nº DE INSCRIÇÃO:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos Nº DE ORDEM, Nº DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o Caderno de Provas antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 20 questões objetivas e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 2 horas e 30 minutos após o início da resolução da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluso o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta correta será a soma dos números associados às alternativas corretas. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme o exemplo ao lado: questão 13, resposta 09 (soma das alternativas 01 e 08).
- 8. Se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas, constante abaixo, e destaque-o, para retirá-lo hoje, nesta sala, no horário das 13h15min às 13h30min, mediante apresentação do documento original de identificação do candidato. Após esse período, não haverá devolução.
- 9. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS — PROVA 3 — INVERNO 2013

N° DE ORDEM:

NOME:

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

FÍSICA

Questão 01

Analise as alternativas abaixo e assinale o que for correto.

- 01) Quando ocorre movimento relativo entre uma fonte de ondas sonoras e um receptor dessas ondas em um meio qualquer, verifica-se que a velocidade de propagação do som no meio se altera e que essa alteração é maior quanto maior for a velocidade da fonte em relação ao receptor.
- 02) A frequência aparente do som que atinge um observador em repouso, quando a fonte sonora se aproxima desse observador, é maior do que a frequência real do som emitido pela fonte.
- 04) O comprimento de onda de uma onda sonora emitida por uma fonte em movimento é alterado em função da velocidade de movimentação da fonte.
- 08) Quando um observador se afasta de uma fonte sonora que está em repouso, a frequência aparente do som percebido por esse observador aparenta ser menor do que a frequência real do som emitido pela fonte.
- 16) A luz emitida por fontes luminosas em movimento na superfície da Terra, como a luz dos faróis dos carros em movimento, tem sua frequência e sua velocidade alteradas em função do efeito Doppler.

Questão 02

Uma empresa da área de telecomunicações possui uma sala climatizada para alojar sua central de computadores, ao lado de uma sala de controle também climatizada. A parede que separa essas salas possui uma janela retangular de vidro, com 6,0 mm de espessura, 1,0 m de altura e 1,5 m de largura. Supondo que o restante dessa parede e todas as outras são isoladas termicamente, que uma das salas é mantida em 24 °C e a outra em 19 °C e que a condutividade térmica do vidro é $2.0 \times 10^{-4} \text{ kcal/(s.m.°C)}$, assinale o que for **correto**.

- 01) O fluxo de calor que atravessa a janela é de aproximadamente 250 cal/s.
- 02) A potência térmica que está sendo transferida de uma sala para a outra através da janela é de aproximadamente 2.100 W.
- 04) A quantidade de calor transferida de uma sala para a outra através da janela, no intervalo de tempo de uma hora, é de aproximadamente 9 x 10⁵ cal.
- 08) Se a espessura da janela de vidro for diminuída, o fluxo de calor que a atravessa também diminuirá.
- 16) O fluxo de calor que atravessa a janela de vidro é diretamente proporcional à área da mesma.

Questão

Uma lente delgada biconvexa, com raios de curvatura de 30 cm e índice de refração n_{Le} , é colocada em um meio líquido com índice de refração $n_{Li} = 2$. Um raio luminoso monocromático incide sobre a lente paralelamente ao seu eixo principal. Com base nessas informações, analise as alternativas abaixo e assinale o que for correto.

- 01) Quando $n_{Le} = 2.5$, ao penetrar na lente, o raio de luz se afasta da normal à superfície da lente.
- 02) Quando $n_{Le} = 1.5$, ao emergir da lente, o raio de luz se aproxima da normal à superfície da lente.
- 04) Quando $n_{Le} = 2.5$, a distância focal dessa lente é 0,6 m.
- 08) Quando $n_{Le} = 1.5$, essa lente se comporta como uma lente divergente.
- 16) Quando $n_{Le} = 1,5$, a vergência dessa lente é $\frac{5}{3}$ di.

Um bloco de massa M kg, com velocidade inicial v_o m/s, desliza sobre uma superfície plana e horizontal com atrito. Após percorrer uma distância D m, ele para. Considerando que o coeficiente de atrito cinético entre o bloco e a superfície plana e horizontal é μ_c , assinale o que for **correto**.

- 01) O módulo da força resultante que atua sobre o bloco é $\mu_c Mg$ N, em que g é a aceleração gravitacional dada em m/s².
- 02) O trabalho realizado pela força resultante é positivo.
- 04) O intervalo de tempo que o bloco leva para parar é $2D/v_o$ s.
- 08) A variação da energia potencial gravitacional do bloco é nula.
- 16) A força de atrito atua na mesma direção do movimento do bloco.

Questão 0

Em um experimento realizado no vácuo, uma das extremidades de um fio delgado, inextensível e isolante é presa a um suporte fixo, enquanto a outra extremidade do fio é presa a uma pequena esfera de peso 2 x 10⁻³ N, carregada com uma carga positiva de 5 x 10⁻⁶ C. Esse conjunto, que lembra um pêndulo, é colocado no interior de um capacitor de placas paralelas, no centro geométrico do mesmo. As placas do capacitor, que possuem lados muito maiores do que o comprimento do fio, estão dispostas na vertical, distanciadas uma da outra por 5 cm, e, na posição de equilíbrio, quando a esfera está em repouso no interior das placas, o fio que prende a esfera faz um ângulo de 30° com a vertical. Considerando que o conjunto suporte-fio-esfera não altera as características do campo elétrico no interior do capacitor, analise as alternativas abaixo e assinale o que for **correto**.

Dado: tg
$$30^{\circ} = \frac{\sqrt{3}}{3}$$

- 01) O módulo do campo elétrico entre as placas do capacitor é de $\frac{2\sqrt{3}}{15}$ x 10^3 $\frac{N}{C}$.
- 02) A diferença de potencial entre as placas do capacitor é de $\frac{20\sqrt{3}}{3}$ V.
- 04) A densidade superficial de cargas, em valor absoluto, em cada placa do capacitor, é de $\frac{2\sqrt{3}}{15} \frac{C}{m^2}$.
- 08) O módulo da força elétrica experimentada pela esfera, na posição de equilíbrio, é de $\sqrt{3}$ x 10^{-6} N.
- 16) O módulo da tensão experimentada pelo fio, na posição de equilíbrio, é de $\frac{4\sqrt{3}}{3}$ x 10^{-3} N.

Um ponto material oscila segundo um movimento harmônico simples, com amplitude de 0.5 m e frequência de 2 Hz. Considerando que, para o instante t=0 s, o ponto material estava com energia potencial positiva e máxima, assinale o que for **correto**.

- 01) A frequência angular e a fase inicial do ponto material são, respectivamente, 4π rad/s e 0 rad (zero rad).
- 02) A função horária da posição do ponto material é dada por $x(t) = 0.5 \cos(4\pi t)$.
- 04) A energia cinética assume seu valor máximo duas vezes a cada oscilação.
- 08) A aceleração do ponto material não varia com o decorrer do tempo.
- 16) A energia mecânica nesse tipo de movimento permanece constante.

Questão 07

Analise as alternativas abaixo e assinale o que for correto.

- 01) O primeiro postulado da teoria da Relatividade Restrita diz que as leis físicas são idênticas em relação a qualquer referencial acelerado.
- 02) Um elétron, oscilando com frequência *f*, emite ou absorve energia somente em quantidades inteiras ou múltiplos inteiros de *hf*, sendo *h* a constante de Planck.
- 04) As órbitas permitidas a um elétron que orbite em torno de um núcleo atômico, denominadas estados estacionários, são aquelas em que a energia é quantizada.
- 08) O fenômeno da difração de elétrons reflete a dualidade onda-partícula desse lépton.
- 16) A meia-vida, ou período de semidesintegração, é o tempo após o qual um material radioativo perde completamente suas características radioativas.

Questão 08

Assinale o que for **correto**.

- 01) Em uma colisão perfeitamente inelástica entre dois corpos, esses permanecem "juntos" após a colisão e não ocorre diminuição da energia cinética total.
- 02) Em uma colisão perfeitamente inelástica, o momento linear total (quantidade de movimento total) não apresenta alteração.
- 04) A energia cinética e o momento linear (quantidade de movimento) possuem as mesmas unidades.
- 08) Em um "acidente" (colisão) automobilístico, sempre temos uma colisão elástica.
- 16) Tanto antes quanto após uma colisão elástica entre dois corpos, o momento linear total (quantidade de movimento total) apresenta a mesma direção e o mesmo sentido.

Cinco resistores ôhmicos, $R_1 = 10 \Omega$, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$ e $R_5 = 50 \Omega$, são arranjados no vácuo para comporem diferentes circuitos elétricos. Aos terminais desses circuitos, é ligada uma fonte de tensão de 100 V e de resistência interna nula. Com base nessas informações, analise as alternativas abaixo e assinale o que for **correto**.

- 01) Quando R_1 , R_2 , R_3 e R_4 são ligados em série e esse arranjo é ligado em paralelo com R_5 , a potência elétrica dissipada nesse circuito é de 300 W.
- 02) Quando R_1 , R_2 , R_3 e R_4 são ligados em série e esse arranjo é ligado em paralelo com R_5 , a corrente elétrica que flui em R_5 é de 2,0 A.
- 04) Quando R_1 , R_2 , R_3 e R_4 são ligados em série e esse arranjo é ligado em paralelo com R_5 , a potência elétrica dissipada em R_3 é de 30 W.
- 08) Quando R_1 , R_2 , R_3 e R_4 são ligados em paralelo e esse arranjo é ligado em série com R_5 , a potência elétrica dissipada em R_5 é de 0,25 W.
- 16) Quando R_1 , R_2 e R_3 são ligados em série e esse arranjo é ligado em paralelo com R_4 e R_5 , a resistência equivalente desse circuito é de 0.10Ω .

Questão 10

Um cientista utiliza o "método de Arquimedes" para determinar a densidade de um corpo metálico homogêneo. Inicialmente, o corpo metálico é suspenso utilizando um dinamômetro e um fio, e a leitura do dinamômetro fornece o valor de 20,0 N. Quando o corpo metálico é inteiramente imerso em água, a leitura do dinamômetro fornece o valor de 10,2 N. Sabendo que a densidade da água é $1x10^3 \ kg/m^3$, desprezando a massa do fio e adotando a aceleração gravitacional de 9,8 m/s², assinale o que for **correto**.

- 01) O volume do corpo é de 1×10^{-3} m³.
- 02) O par força peso do corpo metálico e força de empuxo que a água exerce sobre o corpo metálico é um bom exemplo do par ação-reação, de acordo com a terceira lei de Newton, pois essas forças têm mesmo módulo, mesma direção e sentidos opostos.
- 04) O módulo da força de empuxo que a água exerce sobre o corpo é de aproximadamente 4,9 N.
- 08) Se o corpo metálico for imerso em outro líquido e a leitura do dinamômetro quando o corpo é imerso no líquido for de 15 N, a densidade desse líquido é menor do que a densidade da água.
- 16) A densidade do corpo é de aproximadamente $2x10^3 \text{ kg/m}^3$.

Questão 11

Um microscópio óptico é constituído de duas lentes convergentes dispostas no ar. A objetiva e a ocular possuem distâncias focais de 5 mm e 4 cm, respectivamente, e um objeto extenso é arranjado para observação ao microscópio a 5,13 mm da objetiva. Com base nessas informações e sabendo que a imagem fornecida pela ocular é formada no interior do microscópio a 15 cm dessa lente, analise as alternativas abaixo e assinale o que for **correto**.

- 01) A imagem formada pela objetiva encontra-se a 15 cm dessa lente.
- 02) A imagem formada pela objetiva, que serve de objeto para a ocular, é real, invertida e maior do que o objeto extenso.
- 04) A imagem formada pela ocular é virtual, invertida e maior do que o objeto extenso.
- 08) O aumento linear transversal desse microscópio, que é dado pelo produto dos aumentos lineares transversais da objetiva e da ocular, é de 20 vezes.
- 16) A imagem formada pela objetiva encontra-se a aproximadamente 3,15 cm do eixo principal da ocular.

Sobre as leis de Kepler e a lei da gravitação universal, assinale o que for **correto**.

- 01) O módulo da força gravitacional entre dois corpos é diretamente proporcional ao produto das massas desses corpos.
- 02) Os planetas descrevem órbitas elípticas em torno do Sol, e esse se localiza no centro das elipses.
- 04) Um segmento de reta traçado do Sol até um dado planeta descreve áreas iguais em intervalos de tempos iguais.
- 08) O módulo da velocidade com que os planetas percorrem suas órbitas em torno do Sol tem sempre o mesmo valor.
- 16) Em decorrência de a massa de Júpiter ser muito maior do que a massa da Terra, o período de translação de Júpiter é maior do que o da Terra.

Questão 13

Analise as alternativas abaixo e assinale o que for **correto**.

- 01) Para deslocar uma partícula carregada de um ponto a outro em um campo elétrico uniforme, o trabalho líquido realizado por uma força elétrica independe do sinal e da quantidade de carga elétrica contida na partícula carregada.
- 02) A lei de Gauss relaciona o campo elétrico em um dado ponto P do espaço com a carga elétrica Q que gera esse campo na forma $\Phi_E = \frac{Q}{\varepsilon}$, sendo Φ_E o fluxo de campo elétrico que atravessa uma superfície fechada que engloba Q, e ε a permissividade elétrica do meio.
- 04) O módulo do vetor campo elétrico E, gerado no vácuo por uma placa metálica delgada, infinita e carregada positivamente, é dado por $E=\frac{\sigma}{2\varepsilon_0}$, sendo σ a densidade superficial de cargas da placa e ε_0 a permissividade elétrica do vácuo.
- 08) As linhas de força de um campo elétrico em um dado ponto P do espaço que é definido na forma $\overrightarrow{E} = \frac{\overrightarrow{F}}{q}$, sendo \overrightarrow{E} o vetor campo elétrico e \overrightarrow{F} a força elétrica experimentada por uma carga de prova q colocada em P tangenciam o vetor campo elétrico nesse ponto.
- 16) As superfícies equipotenciais geradas ao redor de uma esfera metálica carregada são perpendiculares às linhas de campo elétrico associadas ao campo elétrico gerado por essa esfera.

Questão 14

Uma torneira defeituosa, após ser fechada, fica "pingando" água com intervalos de tempo iguais entre cada pingo d'água. A "boca" da torneira está a uma altura de *h* m do solo. No instante em que um pingo d'água toca o solo, o quinto pingo d'água subsequente a esse é abandonado da torneira. Considerando que cada pingo d'água é abandonado da torneira com velocidade inicial nula e desprezando o atrito com o ar, assinale o que for **correto**.

- 01) A trajetória dos pingos d'água é retilínea.
- 02) O intervalo de tempo que cada pingo d'água leva para chegar ao solo (desde o instante em que ele deixa a torneira até o instante em que ele atinge o solo) é de $\sqrt{\frac{2h}{g}}$ s, em que g é a aceleração da gravidade.
- 04) Em um dado instante de tempo, a distância entre dois pingos d'água sucessivos é a mesma.
- 08) A velocidade com que os pingos d'água atingem o solo é de $\sqrt{2gh}$ m/s.
- 16) A função horária da velocidade de cada pingo d'água é uma equação de primeiro grau.

Considere um tubo cilíndrico de comprimento \overline{AB} , com uma extremidade aberta em A e outra fechada em B. Um alto-falante que gera ondas sonoras monocromáticas de 200 Hz é colocado próximo à extremidade A do tubo, lançando ondas sonoras em seu interior. No interior do tubo, há um dispositivo que mede a intensidade sonora ponto a ponto, detectando máximos de intensidade em A e a cada 1,6 m a partir de A, e intensidades nulas a cada 0,8 m a partir de A e também no ponto B. Com base nessas informações, analise as alternativas abaixo e assinale o que for **correto**.

- 01) O comprimento de onda das ondas mecânicas formadas no interior do tubo é de 3,2 m.
- 02) No interior do tubo, são formadas ondas mecânicas progressivas, com um nodo em A e um antinodo em B.
- 04) A velocidade de propagação das ondas mecânicas no interior do tubo é de 640 m/s.
- 08) O fenômeno da superposição de ondas é observado no interior desse tubo.
- 16) O comprimento mínimo do tubo para que ondas estacionárias sejam geradas em seu interior, nas condições dadas no enunciado, é de 6,4 m.

Questão 16

Sobre os conceitos de termodinâmica, assinale o que for **correto**.

- 01) Estando em um sistema isolado, dois corpos A e B, um com maior temperatura do que o outro, quando colocados em contato, após certo intervalo de tempo, os dois entrarão em equilíbrio térmico, isto é, estarão a uma mesma temperatura.
- 02) Em um sistema isolado, a energia total desse sistema permanece inalterada.
- 04) Em um sistema isolado, a entropia desse só pode aumentar ou manter-se constante.
- 08) Não é possível realizar um processo em que o único efeito seja retirar certa quantidade de calor de um corpo com temperatura menor e transferir para um corpo com temperatura maior.
- 16) A quantidade de calor retirada de uma fonte de calor por uma máquina térmica que opera em ciclos pode ser convertida totalmente em trabalho.

Questão 17

Um detector de metais é constituído de uma bobina chata e circular composta por 50 enrolamentos de 20 cm de raio, que são percorridos por uma corrente elétrica de 100×10^{-3} A, quando esse detector está ligado e em pleno funcionamento. Com base nessas informações e considerando que o detector é utilizado no vácuo e que a permeabilidade magnética do vácuo é de $4\pi \times 10^{-7} \frac{T.m}{A}$, analise as alternativas abaixo e assinale o que for

analise as alternativas abaixo e assinale o que for correto.

- 01) O vetor indução magnética resultante no centro da bobina do detector de metais está direcionado perpendicularmente ao plano da bobina e sua intensidade pode ser determinada a partir da lei de Biot-Savart.
- 02) A intensidade do vetor indução magnética, gerado no centro da bobina por somente um de seus enrolamentos, é de π x 10^{-7} T.
- 04) As linhas de campo do campo magnético gerado pela bobina do detector de metais estão contidas no plano da bobina, e sua densidade diminui com o aumento da quantidade de espiras na bobina.
- 08) A intensidade do vetor indução magnética, determinada no centro da bobina do detector de metais, é dada na forma $B = \frac{N\mu_0 i}{2R}$, sendo N o número de enrolamentos da bobina, μ_0 a permeabilidade magnética do vácuo, i a corrente que flui nos enrolamentos da bobina e R o raio desses enrolamentos.
- 16) Ao inverter-se o sentido da corrente elétrica que flui na bobina, a direção e o sentido da força magnética e do vetor indução magnética no centro da bobina são invertidos.

Com relação às leis de Newton, assinale o que for correto.

- 01) Um corpo permanece com velocidade constante ou nula, a menos que uma força resultante seja aplicada sobre ele
- 02) A aceleração adquirida por um corpo é diretamente proporcional à força resultante aplicada sobre ele.
- 04) Sempre que um corpo estiver em repouso, nenhuma força estará atuando sobre ele.
- 08) Para que uma força atue sobre um corpo, é necessário o contato físico entre o agente causador da força e o corpo.
- 16) Se um corpo A exerce uma força sobre um corpo B, o corpo B exerce uma outra força sobre o corpo A, de mesma intensidade, de mesma direção e de mesmo sentido da força que o corpo A exerce sobre o corpo B.

Questão 19

Com relação à produção, à caracterização e ao comportamento de ondas, analise as alternativas abaixo e assinale o que for **correto**.

- 01) Uma onda progressiva transversal ou longitudinal pode ser considerada como uma perturbação que se propaga em um meio, transportando energia de um ponto a outro desse meio sem transportar matéria.
- 02) Quando uma frente de ondas transversais luminosas atravessa de um meio a outro (tendo esses meios índices de refração diferentes), ocorre mudança na direção de propagação da frente de ondas, sem alteração na frequência de oscilação dessas ondas.
- 04) O comprimento de onda de uma onda mecânica transversal independe do meio de propagação dessa onda.
- 08) Quanto maior a frequência de uma onda eletromagnética, maior é a energia que essa onda transporta, e menor é o seu comprimento de onda.
- 16) O fenômeno da interferência, que pode ser construtiva ou destrutiva, ocorre quando há superposição de ondas que se propagam em um meio.

Questão 2

Com relação aos conceitos de energia mecânica, assinale o que for **correto**.

- 01) A energia cinética de um corpo é sempre igual ao trabalho da força resultante que atua sobre esse corpo.
- 02) O valor numérico da energia potencial de um corpo pode depender da origem do referencial adotado.
- 04) A variação da energia potencial de um corpo é igual ao trabalho da força resultante que atua sobre esse corpo.
- 08) O valor da energia cinética de um corpo é sempre positivo ou nulo.
- 16) Em um sistema físico isolado e sem atritos, a energia mecânica é a somatória de suas energias cinética e potencial.

FÍSICA – Formulário e Constantes Físicas

FORMULÁRIO CONSTANTES FÍSICAS								
1								
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$\rho = \frac{m}{V}$	$P = Vi = Ri^2 = \frac{V^2}{R}$	$G = 6,6 \times 10^{-11} \text{ Nm}^2 / \text{kg}^2$					
$x = A\cos(\omega t + \varphi_0)$	$p = \frac{F}{A}$	$V = \varepsilon - ri$	$K = 9 \times 10^9 \text{ Nm}^2 / \text{C}^2$					
$a = -\omega^2 x$	$p = p_0 + \rho g h$	$F = BiLsen\theta$	$\mu_0 = 4\pi \times 10^{-7} \text{ Tm/A}$					
$v = v_0 + at$	$E = \rho Vg$	$C = \frac{k\varepsilon_0 A}{d}$	$c = 3 \times 10^8 \mathrm{m/s}$					
$v^2 = v_0^2 + 2a\Delta x$	$L = L_0 (1 + \alpha \Delta T)$	$C = \frac{q}{\Delta V}$	$\rho_{\text{água}} = 1.0 \text{ g/cm}^3$					
$\vec{F}_R = m\vec{a}$	Q = mL		$c_{\text{água}} = 1.0 \text{ cal/g}^{\circ}\text{C}$					
$F_{\rm C} = m \frac{v^2}{r}$	pV = nRT	$U = \frac{1}{2}C(\Delta V)^2$	$c_{\text{vapor d'água}} = 0.5 \text{ cal/g}^{\circ}\text{C}$					
$F_k = -kx$	$Q = mc\Delta T$	$B = \frac{\mu_0 i}{2\pi r}$	$L_{F(\text{água})} = 80 \text{ cal/g}$					
$\vec{P} = \vec{mg}$	$Q = nc_p \Delta T$	2701	$L_{V(\text{água})} = 540 \text{ cal/g}$					
$f_a = \mu N$	$\Phi = \frac{KA}{L}(T_2 - T_1)$	$\phi_{B} = BS\cos\theta$ $\phi_{B} = Li$	1 cal = 4,18 J					
$\mathbf{W} = \mathbf{F} \mathbf{d} \cos \theta$	$\Delta Q = W + \Delta U$		_					
$E_c = \frac{1}{2} \text{ mv}^2$	$\eta = 1 - \frac{T_2}{T_1}$	$U_{\rm B} = \frac{1}{2} L i^2$	$R = 0.082 \frac{\text{atm L}}{\text{mol K}}$					
$E_p = mgh$	$W = p\Delta V$	$\varepsilon = -\frac{\Delta \Phi_{\mathbf{B}}}{\Delta t}$	$1 \text{ atm} = 1,013 \times 10^5 \text{ N/m}^2$					
$E_{p} = \frac{1}{2} kx^{2}$	$R = \frac{W}{Q_1}$	$n = \frac{c}{v}$						
$W = \Delta E_{c}$	$F = qvBsen\theta$	$n_1 \operatorname{sen}\theta_1 = n_2 \operatorname{sen}\theta_2$						
$\vec{p} = \vec{mv}$	$F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$	$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$						
$\vec{I} = \vec{F}\Delta t = \Delta \vec{p}$ $\tau = \pm F dsen\theta$	$\vec{F} = q\vec{E}$	$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$						
$P = \frac{\Delta W}{\Delta t}$	$V = \frac{q}{4\pi\epsilon_0 r}$	$m = -\frac{p'}{p}$						
$E = G^{m_1 m_2}$	V = Ed	$v = \lambda f$						
$F = G \frac{m_1 m_2}{d^2}$	$W_{AB} = qV_{AB}$	$E = mc^2$						
$T = 2\pi \sqrt{\frac{L}{g}}$	$i = \frac{\Delta q}{\Delta t}$	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$						
$T = 2\pi \sqrt{\frac{m}{k}}$	$V = Ri$ $R = \rho \frac{L}{A}$	$\sqrt{1 - \frac{v}{c^2}}$ $T^2 = kr^3$						
$v = \omega r$	$R = \rho \frac{=}{A}$							
$\phi_{E} = ES\cos\theta$	$f_n = \frac{n}{2l} \sqrt{\frac{F}{\mu}}$	$f = f_0 \left(\frac{v \pm v_R}{v \mp v_f} \right)$						
$\sigma = \frac{\Delta q}{\Delta S}$	$v = \sqrt{\frac{B}{d}}$	$f_n \frac{nv}{2l}$						
$\overline{E}_c = \frac{3}{2}kT$	$v = \sqrt{\frac{B}{d}}$ $C = \frac{\Delta Q}{\Delta T}$	$f_{n} = \frac{nv}{4l}$ $C = mc$						
		C – IIIC						