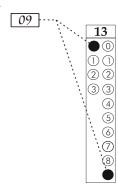


Prova 3 — Física


QUESTÕES OBJETIVAS

Nº DE ORDEM: Nº DE INSCRIÇÃO:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos Nº DE ORDEM, Nº DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o Caderno de Provas antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 20 questões objetivas e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 2 horas após o início da resolução da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluído o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta correta será a soma dos números associados às alternativas corretas. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme exemplo ao lado: questão 13, resposta 09 (soma das alternativas 01 e 08).
- 8. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.
- 9. Se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas constante abaixo e destaque-o, para retirá-lo hoje, nesta sala, no horário das 13h15min às 13h30min, mediante apresentação do documento de identificação do candidato. Após esse período, não haverá devolução.

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS - PROVA 3 - INVERNO 2012

N° DE ORDEM: NOME:

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

FÍSICA

Questão 01

Um elevador de massa m quilogramas desloca-se verticalmente para cima com velocidade constante, e durante t segundos ele sobe y metros. Considerando a situação descrita, assinale o que for **correto**.

- 01) O trabalho realizado pela força peso é negativo.
- 02) A potência do elevador é $\frac{mgy}{t}$.
- 04) Durante t segundos a variação da energia potencial gravitacional é de mgy.
- 08) A somatória das forças que atuam sobre o elevador é nula.
- 16) A energia mecânica do elevador não varia durante o deslocamento.

Questão 02

Um bloco de massa 2,0 kg desloca-se sobre uma superfície horizontal plana com velocidade constante de 3,0 m/s. Uma força de 5,0 N começa a atuar sobre ele, na mesma direção e sentido da velocidade do bloco. Desprezando os atritos, assinale o que for **correto**.

- 01) A quantidade de movimento do bloco antes da ação da força é de 10 kg.m/s.
- 02) O impulso da força no intervalo de tempo entre o início da ação até 5 s é igual a 25 N.s.
- 04) A quantidade de movimento do bloco 5 s após a força começar a atuar sobre o mesmo é de 31 kg.m/s.
- 08) A aceleração que a força aplica sobre o bloco é de 2.5 m/s^2 .
- 16) A energia cinética antes da ação da força é de 9 J.

Questão 03

Uma barra homogênea com 3,0 m de comprimento e 120 N de peso está horizontalmente em equilíbrio, apoiada em um ponto distante 1,0 m de uma extremidade e com uma força de módulo F aplicada, verticalmente para baixo, a 0,5 m dessa extremidade. Considerando essas informações, assinale o que for **correto**.

- 01) O módulo F da força aplicada é de 120 N.
- 02) A barra estará em equilíbrio se substituirmos a força F por um corpo homogêneo de formato cúbico com 20 cm de aresta, com a face alinhada e posicionado a 20 cm daquela extremidade e com força peso de mesmo módulo da força F.
- 04) O centro de gravidade da barra está localizado na metade de seu comprimento.
- 08) O torque da força F é de 60 N.m.
- 16) O módulo da força normal que o apoio aplica sobre a barra é de 120 N.

Um recipiente adiabático, com êmbulo móvel, contém 2,5 mols de gás hélio. Uma quantidade de calor é fornecida ao gás de tal forma que sua temperatura varia de 200 K a 600 K, mantendo-se a pressão constante. Considerando que o calor específico à pressão constante do gás hélio é 20,8 J.mol⁻¹.K⁻¹, assinale o que for correto.

- 01) A quantidade de calor fornecida à amostra de gás hélio é de aproximadamente 10 kJ.
- 02) O trabalho realizado foi de aproximadamente 8,3 kJ.
- 04) A variação da energia interna da amostra de gás hélio é de aproximadamente 12,5 kJ.
- 08) Se o êmbulo não se mover, a variação de pressão do gás é dada por: $\frac{nR\Delta T}{V}$, em que n é o número de mols, R é a constante universal dos gases, ΔT é variação de temperatura e V é o volume do recipiente.
- 16) Se o êmbulo não se mover, a variação de energia interna da amostra de gás é nula.

05 Questão

Dois corpos, A e B, estão se deslocando sobre uma superfície horizontal sem atrito na mesma direção e sentido. Os corpos A e B têm massas m_A e m_B e os módulos das suas velocidades são respectivamente v_{Ai} e v_{Bi}. Considerando que o corpo B encontra-se inicialmente à frente do corpo A, assinale o que for **correto**.

- 01) Se $v_{Ai} > v_{Bi}$ e $m_A = 2m_B$, a velocidade do corpo A, após uma colisão perfeitamente inelástica com o corpo B, é igual a $\frac{\left(2v_{Ai} + v_{Bi}\right)}{3}$.
- 02) Se os dois corpos estiverem inicialmente a uma distância d um do outro, o intervalo de tempo até a colisão é de $\left(\frac{d}{v_{Ai}-v_{Bi}}\right)$, se $v_{Ai}>v_{Bi}$.
- 04) Se $v_{Ai}=2v_{Bi}\:e\:m_{A}=m_{B},\:o\:$ módulo da velocidade v_{Af} após uma colisão elástica é $3v_{Bi} - v_{Bf}$, em que v_{Bf} é a velocidade do corpo B após a colisão.
- 08) Se inicialmente v_{Bi} for nula e a quantidade de movimento do corpo A for igual a $2m_{_{B}}v_{_{Ai}}$, após uma colisão perfeitamente inelástica a velocidade final do conjunto é de $\left(\frac{5}{4}\right)$ v_{Ai} .
- 16) Em qualquer tipo de colisão a quantidade de movimento e a energia cinética sempre são conservadas.

Rascunho

Ouestão 0

Sobre os conceitos de cinemática, assinale o que for correto.

- 01) A distância que um móvel percorre em um movimento retilíneo e uniforme é dada pelo produto de sua velocidade multiplicada pelo intervalo de tempo gasto no percurso.
- 02) No sistema internacional de unidades (SI), a velocidade é dada em km/h.
- 04) Os intervalos de tempos de queda de dois corpos abandonados à mesma altura e no vácuo são iguais, mesmo que esses dois corpos possuam massas diferentes.
- 08) Em um movimento uniformemente variado, a velocidade média é dada pela razão da distância total percorrida pelo intervalo de tempo gasto no percurso.
- 16) O gráfico da velocidade em função do tempo, para o caso de um móvel descrevendo um movimento retilíneo uniformemente variado, é uma reta, cujo coeficiente angular é a aceleração daquele móvel.

Questão 07

Sobre os conceitos de termodinâmica, assinale o que for **correto**.

- 01) Quanto maior a temperatura de um gás ideal, maior é a energia cinética dos átomos desse gás.
- 02) Não ocorre transporte de matéria quando o calor é transferido pelo processo de condução.
- 04) A evaporação da água, estando esta em sua fase líquida e submetida à pressão de uma atmosfera, só ocorre se sua temperatura for de 100 °C.
- 08) Com o aumento da pressão exercida sobre um bloco de gelo, sua temperatura de fusão aumenta.
- 16) Quanto maior for a pressão exercida sobre um líquido, maior será a temperatura de ebulição desse líquido.

Questão

O calor latente de fusão da prata (Ag) é 21 cal/g e seu ponto de fusão é 961 °C, quando esse metal é submetido a uma pressão de uma atmosfera. Considerando essa informação e o dado abaixo, assinale o que for **correto**.

Dado: $c_{Ag} = 0.056 \text{ cal/g.}^{\circ}\text{C.}$

- 01) Para elevar a temperatura de 1g de prata, de 0 °C até 961 °C, necessitamos fornecer 21 cal.
- 02) Em 961°C, a prata sempre estará totalmente em sua fase líquida.
- 04) Ao transferir 21 cal a 1 g de prata, em sua fase sólida, a 961 °C, sua temperatura aumenta de 1 °C.
- 08) 1 g de prata, em sua fase sólida, à temperatura de 961 °C, necessita de 21 cal para que se converta totalmente em prata na sua fase líquida.
- 16) Na escala Kelvin, o ponto de fusão da prata é aproximadamente 1.234 K.

Ouestão 09

Sobre a gravitação universal, assinale o que for correto.

- 01) Em cada planeta do nosso sistema solar atua uma força de atração gravitacional do Sol.
- 02) A terra exerce sobre a lua uma força de atração gravitacional.
- 04) A força gravitacional é uma força de atração que atua mutuamente entre dois corpos materiais quaisquer.
- 08) O módulo da força gravitacional é diretamente proporcional ao quadrado da distância entre os centros de massas de dois corpos materiais.
- 16) No sistema internacional de unidades (SI), a constante gravitacional (G) tem unidades equivalentes a m³/(kg.s²).

Questão 10

Sobre o ciclo de Carnot, assinale o que for correto.

- 01) No ciclo de Carnot, ocorrem duas transformações adiabáticas e também duas transformações isotérmicas.
- 02) As transformações no ciclo de Carnot são reversíveis.
- 04) Durante a expansão isotérmica, uma certa quantidade de calor é retirada da fonte quente.
- 08) O gás utilizado no ciclo de Carnot atinge seu maior volume ao final da expansão isotérmica.
- 16) Quando a fonte fria estiver a 0 °C, o rendimento da máquina de Carnot será máximo.

Questão 11

Imagine que, no futuro, uma nave espacial de comprimento de repouso L_0 e massa de repouso M_0 passe pela Terra a uma velocidade constante muito próxima à velocidade da luz. Dois cronômetros idênticos e altamente precisos, situados um na nave e outro em um laboratório na Terra, são disparados simultaneamente quando a nave passa diretamente sobre o laboratório. Considere a Terra como um referencial inercial, e desconsidere os efeitos relacionados à resistência do ar e à ação do campo gravitacional terrestre. Levando em consideração a situação descrita, assinale o que for **correto**

- 01) O comprimento da nave, medido a partir da Terra, será menor que L_0 .
- 02) A razão entre os intervalos de tempo que serão medidos pelos cronômetros da Terra e da nave será maior que um.
- 04) A massa da nave, determinada a partir da Terra, será maior que M_0 .
- 08) Se a velocidade da nave se aproximar muito da velocidade da luz, sua quantidade de movimento, medida a partir da Terra, tornar-se-á negativa.
- 16) Se a velocidade da nave for igual à velocidade da luz, sua energia total relativística será menor que sua energia de repouso.

Questão 1

Um solenoide de $20~\pi^2$ cm de comprimento é constituído de 500 espiras de raio 4 cm. Ele está imerso no vácuo quando uma corrente elétrica, que vai de 0,0 A a 0,5 A em 30 s antes de estabilizar-se, é injetada no mesmo. Utilizando essas informações, assinale o que for **correto**.

- 01) O fluxo magnético autoinduzido no solenoide, no instante t = 60 s, é $4.0 \times 10^{-4} \text{ Wb}$.
- 02) A indutância desse solenoide, no instante t = 60 s, é $8.0 \times 10^{-4} \text{ H}$.
- 04) A força eletromotriz autoinduzida no solenoide, nos primeiros 30 s, é $-\frac{2}{15}$ x 10^{-4} V.
- 08) A força eletromotriz autoinduzida no solenoide, ao término dos primeiros 30 s de fluxo de carga em suas espiras, age no sentido da variação desse fluxo, reforçando-o.
- 16) O fluxo magnético autoinduzido no solenoide, ao término dos primeiros 30 s, se opõe à variação do fluxo magnético provocado pela corrente elétrica nesse solenoide.

Questão 13

Um resistor ôhmico, $R=10~\Omega$, é associado em paralelo com um capacitor ideal de capacitância de 5 μF . Esse arranjo é submetido a uma diferença de potencial constante de 12 V produzida por uma fonte de força eletromotriz de resistência interna $r=2~\Omega$. Com base nessas informações, e considerando que o sistema já atingiu o estado estacionário, assinale o que for **correto**.

- 01) A corrente elétrica que flui nos terminais do resistor R é 1 A.
- 02) A corrente elétrica que flui no capacitor é nula.
- 04) A diferença de potencial nos terminais do resistor R é 10 V.
- 08) A diferença de potencial nos terminais do capacitor é nula
- 16) A energia potencial elétrica acumulada no capacitor é $250~\mu J$.

Questão

Assinale o que for correto.

- 01) Um campo elétrico \vec{E} variável em uma dada região do vácuo provoca o aparecimento de um campo magnético \vec{B} nessa mesma região, com $\vec{E} \perp \vec{B}$.
- 02) A razão $\frac{\left| \overrightarrow{E} \right|}{\left| \overrightarrow{B} \right|}$ determina o módulo da velocidade de

propagação da luz no vácuo.

- 04) Uma onda eletromagnética monocromática pode ser entendida como um feixe de fótons.
- 08) Ondas eletromagnéticas transportam matéria e energia de um ponto a outro no espaço.
- 16) A energia dos fótons associados a uma onda eletromagnética é inversamente proporcional à frequência de oscilação dessa onda.

Questão

Com relação à formação de imagens de objetos extensos, colocados no ar diante de lentes esféricas de índices de refração maiores que o do ar, assinale o que for **correto**.

- 01) A imagem formada por um objeto extenso colocado sobre o centro de curvatura de uma lente convergente é real, do mesmo tamanho que o objeto e invertida.
- 02) A imagem formada por um objeto extenso colocado sobre o foco de uma lente convergente é virtual, maior que o objeto e direita.
- 04) A imagem formada por um objeto extenso colocado sobre o foco de uma lente divergente é virtual, do mesmo tamanho que o objeto e direita.
- 08) A imagem formada por um objeto extenso colocado entre o foco e o centro de curvatura de uma lente convergente é real, maior que o objeto e invertida.
- 16) A imagem formada por um objeto extenso colocado entre o foco e o centro de curvatura de uma lente divergente é virtual, menor que o objeto e invertida.

Questão 16

Sobre o comportamento físico e a constituição de geradores elétricos, assinale o que for **correto**.

- 01) Geradores elétricos são dispositivos que transformam uma forma qualquer de energia em energia elétrica, como aqueles instalados na usina hidrelétrica de Itaipu.
- 02) A equação do gerador é V = ε ri, sendo V a diferença de potencial disponível para o circuito, ε a força eletromotriz fornecida pelo gerador, r a resistência interna do gerador e i a corrente elétrica fornecida pelo gerador.
- 04) Pilhas alcalinas são geradores de corrente alternada, que possuem ânodo, cátodo e eletrólito.
- 08) A força eletromotriz fornecida a um circuito elétrico por um grupo de geradores elétricos idênticos associados em série é o somatório das forças eletromotrizes desse grupo de geradores.
- 16) A resistência equivalente de um grupo de geradores elétricos idênticos associados em paralelo é a soma das resistências internas desses geradores.

Questão 17

Considere que quatro cargas elétricas idênticas Q estão dispostas no vácuo, formando um quadrado de lado L, e assinale o que for **correto**.

- 01) O campo elétrico no centro do quadrado é nulo.
- 02) O potencial elétrico no centro do quadrado é constante.
- 04) O módulo do campo elétrico no ponto médio de um dos lados do quadrado é $E=\frac{4\pi Q^2}{L^2}$.
- 08) O potencial elétrico no ponto médio de um dos lados do quadrado é $\frac{\sqrt{5}+1}{\sqrt{5}} \left(\frac{4k_0Q}{L}\right)$, sendo k_0 a constante
- 16) A força elétrica experimentada por uma carga de prova q_0 colocada no centro do quadrado será tanto maior quanto maior for q_0 .

Ouestão

Sobre o conceito de potencial elétrico, assinale o que for **correto**.

- 01) A razão entre a energia potencial elétrica e a carga elétrica de uma pequena carga de prova q₀ positiva, colocada em um ponto P do espaço onde existe um campo elétrico, define o potencial elétrico nesse ponto P.
- 02) Em uma região do espaço onde existe um campo elétrico uniforme, a diferença de potencial elétrico entre dois pontos quaisquer dessa região pode ser representada por um vetor que liga esses pontos.
- 04) O potencial elétrico V gerado por uma carga elétrica pontual Q em um dado ponto P do vácuo é $V = k_0 \frac{Q}{d}$, sendo k_0 a constante eletrostática do vácuo e d a distância do ponto P até a carga Q.
- 08) O potencial elétrico na superfície de uma esfera metálica carregada, para uma dada quantidade de carga Q_0 fixa, será tanto maior quanto menor for o raio dessa esfera.
- 16) Superfícies equipotenciais em um campo elétrico são superfícies cujos pontos têm potenciais elétricos variáveis.

Questão 19

Sobre os conceitos relativos a ondas sonoras e à propagação do som, assinale o que for **correto**.

- 01) Uma onda sonora pode ser refletida, refratada, difratada e polarizada.
- 02) O som necessita de meios materiais e elásticos para se propagar.
- 04) A intensidade das ondas sonoras que se propagam no ar independe da energia dessas ondas.
- 08) A altura do som é uma característica relacionada à sua frequência. Quanto maior for a frequência do som, mais agudo e alto será esse som.
- 16) Quanto maior a densidade de um meio, maior é a dificuldade em retirar suas partículas da posição de equilíbrio, o que dificulta a propagação do som nesse meio.

Questão 2

Assinale o que for **correto**.

- 01) Um conjunto constituído de dois meios homogêneos e transparentes à passagem da luz visível, separados por uma superfície plana, é chamado de dioptro plano.
- 02) Se o índice de refração da água contida em uma piscina é maior que o do ar, a profundidade de uma piscina contendo água, quando observada do ar e da lateral da piscina, é sempre menor que sua profundidade real.
- 04) A luz visível que atravessa uma lâmina de faces paralelas, fazendo um ângulo de 30° com relação a normal a essa superfície, é desviada lateralmente em relação à sua direção de incidência.
- 08) A luz visível polarizada não sofre refração ao atravessar um dioptro plano.
- 16) A luz visível polarizada não obedece à lei de Snell ao atravessar uma lâmina de faces paralelas.

FÍSICA – Formulário e Constantes Físicas

$\begin{array}{ c c c c c c }\hline x = x_0 + v_0 t + \frac{1}{2} at^2 & \rho = \frac{m}{V} & P = Vi = Ri^2 = \frac{V^2}{R} & G = 6,6 \times 10^{-11} \ Nm^2/kg \\ x = A \cos (\omega t + \phi_0) & p = \frac{F}{A} & V = \epsilon - ri \\ a = -\omega^2 x & p = p_0 + \rho gh \\ v = v_0 + at & E = \rho Vg & C = \frac{k\epsilon_0 A}{d} & c = 3 \times 10^8 m/s \\ v^2 = v_0^2 + 2a \Delta x & L = L_0 (1 + \alpha \Delta T) & C = \frac{q}{\Delta V} & c = \frac{q}{\Delta V} \\ F_R = ma & Q = mL & V = \frac{1}{2} C(\Delta V)^2 & c_{vapor d'água} = 0,5 \ cal/g = 0.5 \ cal/$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{vmatrix} x - A\cos\left(\omega t + \psi_0\right) \\ a = -\omega^2 x \\ v = v_0 + at \\ v^2 = v_0^2 + 2a\Delta x \\ \vec{F}_R = m\vec{a} \end{vmatrix} = p_0 + \rho g h$ $E = \rho V g$ $C = \frac{k\epsilon_0 A}{d}$ $C = \frac{q}{\Delta V}$ $C $	g^2
$\begin{vmatrix} \mathbf{a} = -\mathbf{\omega}^{2} \mathbf{x} \\ \mathbf{v} = \mathbf{v}_{0} + \mathbf{a}\mathbf{t} \\ \mathbf{v}^{2} = \mathbf{v}_{0}^{2} + 2\mathbf{a}\Delta\mathbf{x} \\ \vec{F}_{R} = \mathbf{m}\vec{a} \end{vmatrix} = \mathbf{p}_{0} + \rho \mathbf{g}\mathbf{h}$ $\mathbf{C} = \frac{\mathbf{k}\varepsilon_{0}\mathbf{A}}{\mathbf{d}}$ $\mathbf{C} = \frac{\mathbf{k}\varepsilon_{0}\mathbf{A}}{\mathbf{d}}$ $\mathbf{C} = \frac{\mathbf{k}\varepsilon_{0}\mathbf{A}}{\mathbf{d}}$ $\mathbf{C} = \frac{\mathbf{k}\varepsilon_{0}\mathbf{A}}{\mathbf{d}}$ $\mathbf{C} = \frac{\mathbf{q}}{\Delta\mathbf{V}}$	
$\begin{vmatrix} \mathbf{v} = \mathbf{v}_0 + \mathbf{a}\mathbf{t} \\ \mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a}\Delta\mathbf{x} \\ \vec{F}_R = \mathbf{m}\vec{\mathbf{a}} \end{vmatrix} = \mathbf{E} = \rho \mathbf{V}\mathbf{g}$ $\begin{vmatrix} \mathbf{C} = \frac{\mathbf{k}\epsilon_0 \mathbf{A}}{\mathbf{d}} \\ \mathbf{C} = \frac{\mathbf{q}}{\Delta \mathbf{V}} \\ \mathbf{C} = \frac{\mathbf{q}}{\Delta \mathbf{V}} \end{vmatrix}$ $\mathbf{C} = \frac{\mathbf{q}}{\Delta \mathbf{V}}$	
$\vec{F}_R = m\vec{a}$ $Q = mL$ $C = \frac{q}{\Delta V}$ $c_{\text{água}} = 1.0 \text{ cal/g}^{\circ}C$	
$\dot{F}_R = ma$ $Q = mL$ $c_{\text{água}} = 1.0 \text{ cal/g}^{\circ}C$	
$ F - m \frac{v^2}{2} $ $ pV = nRT $ $ U = \frac{1}{2}C(\Delta V) $ $ c = 0.5 cal/c$	
vapor d'água vapor d'água	g°C
$Q = mc\Delta T$	
$\vec{P} - m\vec{q}$ $\vec{p} = 540 \text{ cal/g}$	
$\begin{array}{c c} W & E1 & \cdots & 0 \\ \end{array}$	
$\begin{aligned} W &= Fd \cos \theta \\ E_c &= \frac{1}{2} mv^2 \end{aligned} \qquad \begin{cases} U_B &= \frac{1}{2} Li^2 \\ \eta &= 1 - \frac{T_2}{T_1} \end{cases} \qquad U_B = \frac{1}{2} Li^2 $	
$\begin{bmatrix} c & 2 \\ E_p = mgh \end{bmatrix} W = p\Delta V \qquad \qquad \begin{bmatrix} \epsilon = -\frac{\Delta \Phi_B}{\Delta t} \end{bmatrix} $ 1 atm = 1,013 × 10 ⁵ N/m	2
$\begin{vmatrix} E_p = \frac{1}{2} kx^2 & R = \frac{W}{Q_1} \\ R = \frac{C}{V} \end{vmatrix}$	
$W = \Delta E_{c}$ $F = qvBsen\theta$ $n_{1}sen\theta_{1} = n_{2}sen\theta_{2}$	
$\vec{p} = \vec{m}\vec{v}$ $F = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ $\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$	
$\vec{I} = \vec{F}\Delta t = \Delta \vec{p}$ $\vec{F} = q\vec{E}$ $\frac{1}{c} = \frac{1}{c} + \frac{1}{c}$	
$F = G \frac{m_1 m_2}{d^2}$ $V = Ed$ $W_{AB} = qV_{AB}$ $V = \lambda f$	
$ AD \cdot AD E = mc^2$	
$T = 2\pi \sqrt{\frac{L}{g}}$ $I = \frac{\Delta q}{\Delta t}$ $V = Ri$ $I = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	
$T = 2\pi \sqrt{\frac{m}{k}} \qquad V = Ri \qquad \sqrt{1 - \frac{v}{c^2}}$	
$\begin{vmatrix} 1 = 2\pi\sqrt{\frac{k}{k}} \\ v = \omega r \end{vmatrix}$ $R = \rho \frac{L}{A}$ $T^{2} = kr^{3}$ $(v + v)$	
$\phi_{E} = ES \cos \theta \qquad f_{n} = \frac{n}{2l} \sqrt{\frac{F}{\mu}} \qquad f = f_{0} \left(\frac{v \pm v_{R}}{v \mp v_{f}} \right)$	
$\sigma = \frac{\Delta q}{\Delta S}$ $v = \sqrt{\frac{B}{d}}$ $C = \frac{\Delta Q}{\Delta T}$ $f_n \frac{nv}{2l}$ $f_n = \frac{nv}{4l}$ $C = mc$	
$C = \frac{\Delta Q}{\Delta T}$ $f_n = \frac{nV}{4l}$ $C = mc$	