Prova 3 - Matemática

QUESTÕES OBJETIVAS - VESTIBULAR DE VERÃO 2010

N° DE ORDEM:

Nº DE INSCRIÇÃO:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos N.º DE ORDEM, N.º DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o Caderno de Provas antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 40 questões objetivas (20 de cada matéria) e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 2 horas após o início da resolução da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluído o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta correta será a soma dos números associados às proposições verdadeiras. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme exemplo ao lado: questão 13, resposta 09 (soma das proposições 01 e 08).
- 8. Se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas constante nesta prova e destaque-o, para retirá-lo hoje, nesta sala, no horário das 13h15min às 13h30min, mediante apresentação do documento de identificação do candidato. Após esse período, não haverá devolução.
- 9. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.

13

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS — VESTIBULAR DE VERÃO 2010 — PROVA 3.

Nº DE ORDEM: NOME:

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

Rascunho

MATEMÁTICA

Questão 01

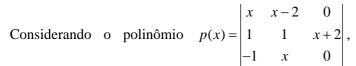
Um brinquedo eletrônico tem um disco de 10 cm de raio, e esse disco possui 5 pontos igualmente distribuídos em seu bordo e numerados de 1 a 5 no sentido horário. Uma esfera magnética movimenta-se na borda desse disco. Quando posicionada em um ponto de número ímpar, movimenta-se para o próximo número, em sentido horário; e quando posicionada em um ponto de número par, movimenta-se dois números também em sentido horário. Em relação ao exposto, assinale o que for **correto**.

- 01) Se a esfera é inicialmente colocada no ponto de número 5, com 1.000 movimentos, a esfera irá parar no ponto de número 2.
- 02) Se a esfera começa na posição 1, com dois movimentos, o ângulo do maior arco compreendido entre a posição 1 e a posição final, em relação ao centro do disco, em radianos, mede $\frac{6\pi}{5}$.
- 04) Se a esfera começa na posição 2, com 3 movimentos, o caminho total que a esfera percorre mede 10π cm.
- 08) Se a esfera não inicia na posição 5, então ela nunca passará por essa posição.
- 16) Qualquer que seja a posição em que a esfera seja inicialmente colocada, ela sempre passará pela posição 4.

Questão 02

Para arrecadar fundos, uma associação beneficente realizará um sorteio de diversos prêmios. Para esse sorteio, foram vendidas cartelas numeradas com números de 4 dígitos e cada dígito variando de 1 a 6. A escolha da cartela vencedora se dará pela retirada de bolas numeradas de 1 a 6, e cada bola será retirada de uma urna distinta. Além do prêmio principal a ser dado para a cartela sorteada, prêmios também serão dados pela soma *S* e pelo produto *P* dos dígitos do número de cada cartela. Supondo que todas as cartelas foram vendidas, assinale o **correto**.

- 01) Foram vendidas 1.300 cartelas.
- 02) Existem 650 cartelas com números pares.
- 04) Existem 650 cartelas com S ímpar.
- 08) Existem 1.215 cartelas com P par.
- 16) Se para uma determinada cartela *P* é ímpar, então *S* é par.



assinale o que for correto.

- 01) A equação p(x) = 0 possui uma raiz de multiplicidade 2.
- 02) O resto da divisão de p(x) por (x+3) é um número primo.
- 04) $p\left(\frac{1}{2}\right) > \frac{13}{4}$.
- 08) Se a < -2 e b > 1, então $p(a) \cdot p(b) < 0$.
- 16) O polinômio q(x) = p(x) 4 é irredutível.

Questão 04

Seja ABCD um retângulo com altura 2 cm, em que os pontos A = (1,0) e B = (2,0) pertencem à base, os pontos C e D se localizam no primeiro quadrante, e o segmento AD é paralelo ao segmento BC.

Seja P o ponto de interseção das diagonais de ABCD e r a reta que passa por P e pela origem O = (0,0). Sejam M e N os pontos onde r intersecta ABCD, tal que M pertence ao segmento AD e N pertence ao segmento BC. Considerando o exposto, assinale a(s) alternativa(s) correta(s).

- 01) A área do trapézio AMNB é 1 cm².
- 02) As medidas dos segmentos AM e NC são iguais.
- 04) A reta r é perpendicular à reta \overrightarrow{DP} .
- 08) A área do triângulo $MAP \notin \frac{1}{6} \text{ cm}^2$.
- 16) Toda reta que passa pelo ponto *P* e que intersecta o lado *AD* do retângulo divide este em duas regiões de <u>áreas</u> iguais.

Questão 05

Considerando que as medidas, em centímetros, dos lados de um paralelepípedo retângulo são três números inteiros consecutivos, tais que o produto deles é oito vezes a sua soma, assinale a(s) alternativa(s) **correta(s)**.

- 01) A soma é um múltiplo de 5.
- 02) O volume do paralelepípedo é 60 cm³.
- 04) A área lateral do paralelepípedo é 148 cm².
- 08) O comprimento da maior diagonal do paralelepípedo é 9 cm.
- 16) Uma das medidas dos lados do paralelepípedo é múltiplo de 3.

Questão 06

Considerando que S é o conjunto de todas as retas do plano com equação da forma ax + by = c, em que a, b e c são números reais distintos em progressão geométrica, nessa ordem, assinale a(s) alternativa(s) **correta(s)**.

- 01) Duas retas distintas de S podem ser paralelas.
- 02) O conjunto S não contém retas horizontais.
- 04) O conjunto S não contém retas verticais.
- 08) A reta x y = 0 não intercepta nenhuma reta de S.
- 16) O conjunto S contém retas perpendiculares entre si.

Questão 07

Dado um número natural $n \ge 1$ e considerando que as raízes n-ésimas da unidade são as raízes complexas do polinômio $x^n - 1$, assinale a(s) alternativa(s) **correta(s**).

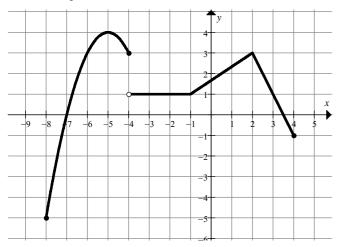
- 01) O módulo de qualquer raiz *n*-ésima da unidade é igual a 1.
- 02) Todas as raízes de $x^5 + x^4 + x^3 + x^2 + x + 1$ são também raízes sextas (6-ésimas) da unidade.
- 04) Se z_1 e z_2 são raízes n-ésimas da unidade, ambas distintas de 1, então z_1z_2 também é uma raiz n-ésima da unidade.
- 08) Se z_1 é uma raiz quinta da unidade e z_2 é uma raiz sétima da unidade, então $\frac{z_2}{z_1}$ é uma raiz quinta da unidade.
- 16) x = -1 é sempre raiz da unidade para $n \ge 2$.

Rascunho

08

Rascunho

Considerando a figura abaixo, que ilustra o gráfico de uma função $f:[-8,4] \to \mathbb{R}$ em um sistema ortogonal de coordenadas cartesianas xOy, em que a porção referente ao subintervalo do domínio [-8,-4] é parte de uma parábola, e o restante do gráfico é uma linha poligonal, assinale o que for **correto**.



- 01) Se $-8 \le x \le -4$, então $f(x) = -x^2 10x 21$.
- 02) $f(\frac{8}{3}) = \frac{5}{3}$.
- 04) $\frac{f(2)-f(4)}{2} > \frac{f(2)-f(-1)}{3}$.
- 08) A equação f(x) = 1 possui apenas cinco raízes reais distintas.
- 16) Se x é solução da equação f(x) = 2, então 0 < x < 3.

Questão 09

Considerando a função $f(x) = 2^{-x/12} \cos x$, com $0 \le x \le 12\pi$, assinale a(s) alternativa(s) **correta(s)**.

- 01) A função f é periódica com período π .
- 02) As raízes da função f são também raízes da função $g(x) = \cos x$.
- 04) Para x > 12, tem-se que $|f(x)| \le \frac{1}{2}$.
- 08) O valor máximo de f é 1.
- 16) O valor mínimo de $f \in -1$.

Questão 1

Uma fazenda possui uma represa utilizada para a irrigação das plantações. A represa possui cinco comportas, denominadas A, B, C, D e E, sendo que A e B fornecem água à represa, e C, D e E permitem a saída de água da represa. A comporta A, sozinha, enche a represa em duas horas, e a comporta B, sozinha, enche a represa em três horas. A comporta C, sozinha, esvazia a represa em quatro horas, e D, sozinha, esvazia a represa em cinco horas. Baseando-se nessas informações, assinale a(s) alternativa(s) correta(s).

- 01) Se a represa estiver vazia, e as comportas **A** e **B** forem abertas, ela estará cheia em 72 minutos.
- 02) Se a represa estiver cheia, e as comportas \mathbf{C} e \mathbf{D} forem abertas, a represa estará vazia em $\frac{20}{9}$ horas.
- 04) Se a represa estiver vazia, e A, B, C e D forem abertas, a represa estará cheia em 2 horas.
- 08) Se a represa estiver com metade de seu volume, e **A** e **C** forem abertas, ela estará cheia em 2 horas.
- 16) Se com as comportas **A**, **B** e **E** abertas, o volume da represa não se altera, então **E** sozinha esvazia a represa em 72 minutos.

Questão

Considerando as matrizes de números reais, quadradas e de ordem 3, $A = \begin{pmatrix} a_{i\,j} \end{pmatrix}$ e $B = \begin{pmatrix} b_{i\,j} \end{pmatrix}$, definidas, respectivamente, por

$$a_{ij} = \begin{cases} 2^j & \text{se } i > j \\ 2^{i-j} & \text{se } i = j \\ 2^{j-i} & \text{se } i < j \end{cases} \quad \text{e} \quad b_{ij} = \begin{cases} (-1)^{i+j} & \text{se } i > j \\ 0 & \text{se } i \leq j \end{cases} \quad \text{e} \quad \text{que}$$

 A^t indica a transposta da matriz A, assinale o que for **correto**.

- 01) A matriz *B* é invertível.
- 02) $AB \neq BA$.
- 04) Existe um valor inteiro positivo n para o qual B^n é a matriz quadrada nula de ordem 3.
- 08) A matriz $A A^t = (c_{ij})$ satisfaz $c_{ij} = -c_{ji}$ para todo i e para todo j.
- 16) A matriz $A.A^t = (d_{ij})$ satisfaz $d_{ij} = d_{ji}$ para todo i e para todo j.

- Considerando os sistemas lineares I: $\begin{cases} 2x \frac{1}{5}y = 5 \\ 6x 2y = 8 \end{cases}$ e
- II: $\begin{cases} kx + 2y = 2k + 4 \\ 2x y = 1 \end{cases}$, em que k é uma constante real,

assinale o que for correto.

- 01) O sistema I é possível e determinado.
- 02) Não existe valor real de *k* para o qual o sistema II seja possível e indeterminado.
- 04) Existe um único valor da constante real *k* para o qual o sistema II seja possível e determinado.
- 08) Se k = -6, o sistema II é equivalente ao sistema I.
- 16) O par ordenado (-1, 1) é solução do sistema II, para algum valor real de k.

Ouestão

Considerando a seguinte equação de recorrência de números inteiros, $x_{n+1} = x_n + 5^n$, em que n é um número inteiro positivo e $x_1 = 1$, assinale o que for **correto**.

- 01) $x_n = \frac{1}{4}(5^n 1)$, para todo inteiro n > 1.
- 02) x_n é um número composto para todo $n \ge 2$.
- 04) $x_n x_{n-1}$ é divisível por 5, qualquer que seja o inteiro positivo $n, n \ge 2$.
- 08) $x_n = 781$ para algum inteiro positivo $n, n \ge 2$.
- 16) A sequência $(x_1, x_2, x_3, ..., x_n, ...)$ é uma progressão aritmética.

Assinale o que for correto.

- 01) O coeficiente do termo x^3 em $\left(x \frac{2}{x}\right)^9$ é -672.
- 02) As raízes da equação $(\sqrt{2}+1)^x + \frac{(\sqrt{2}+1)}{(\sqrt{2}+1)^x} = \sqrt{2}+2$ são maiores do que 1.
- 04) Se x e y são números reais tais que y > x, então $a^y > a^x$, em que a é uma constante real positiva.
- 08) A equação $4! C_{x-2, 2} A_{x, 3} = 0$ possui exatamente duas soluções no conjunto dos números inteiros maiores ou iguais a 4.
- 16) $\log_{\frac{1}{49}} \sqrt{7} = -\frac{1}{4}$.

Questão 15

Assinale a(s) alternativa(s) **correta(s)**.

- 01) $\cos^4 x \sin^4 x 2\cos^2 x + 1 = 0$, qualquer que seja x real.
- 02) Se x é um arco do terceiro quadrante e $\cos x = -\frac{3}{5}$, então $1 2\sec x$ tg $x = \frac{49}{9}$.
- 04) $\cos(\pi + x) + \sin(\frac{\pi}{2} + x) = 0$, qualquer que seja x real.
- 08) O domínio da função f definida por $f(x) = \frac{1 + \sec^2 x}{\operatorname{tg}(\pi + x)}, \quad \text{em} \quad \text{que} \quad -\pi \le x \le \pi, \quad \text{\'e}$ $\left\{ x \in [-\pi, \pi] \, / \, x \ne -\frac{\pi}{2} \, \operatorname{e} \, x \ne \frac{\pi}{2} \right\}.$
- $16) \sec\left(\frac{53\pi}{11}\right) > 1.$

Considerando a tabela abaixo, em que constam os resultados obtidos em uma eleição para prefeito de um certo município, assinale o que for **correto**.

Candidato	Porcentagem do total de votos	Número de votos em milhares			
A	46%				
В	32%				
С	19%				
Nulos e Brancos		9,75			

- 01) 325 mil eleitores votaram para prefeito.
- 02) O número de eleitores que votaram em favor do candidato A é maior do que 145 mil.
- 04) O porcentual de votos obtidos pelo candidato A sobre o total de votos não nulos e não brancos foi de 50%.
- 08) O candidato A venceu as eleições com uma vantagem, em relação ao candidato B, de mais de 15% sobre o total de votos não nulos e não brancos.
- 16) O candidato C obteve menos de 25% do total dos votos obtidos pelos outros dois candidatos.

Questão

Considerando o sistema I abaixo, em que z e w são números complexos, e \overline{z} e \overline{w} são, respectivamente, os seus complexos conjugados, assinale o que for **correto**.

I:
$$\begin{cases} w^2 - z^2 = 10(1 - \sqrt{3} i^{23}) & (1) \\ 6\overline{z} - \sqrt{3} \overline{w} = 4\sqrt{3} i & (2) \end{cases}$$

- 01) A equação (1) do sistema I é equivalente a $w^2 z^2 = 10 10\sqrt{3} \ i.$
- 02) O par (z, w) dos números complexos $z = 1 \sqrt{3} i$ e $w = 2\sqrt{3} + 2i$ é uma solução do sistema I.
- 04) O par (z, w) dos números complexos $z = 2 \frac{4\sqrt{3}}{3}i$ e $w = 4\sqrt{3} 4i$ é solução da equação (2) de I, mas não satisfaz à equação (1).
- 08) O par (z, w) dos números complexos $z = 2\cos\frac{5\pi}{3} + 2\sin\frac{5\pi}{3}i$ e $w = 4\cos\frac{\pi}{3} + 4\sin\frac{\pi}{3}i$, é uma solução da equação (2) de I.
- 16) Dois números complexos, ambos sendo números imaginários puros, não formam uma solução de I.

Questão 1

Considerando, em um sistema ortogonal de coordenadas cartesianas xOy, a circunferência C de equação $x^2 + y^2 + 2x - 2y - 6 = 0$, o quadrado Q de lados paralelos aos eixos coordenados, inscrito na circunferência C, e a unidade de medida padrão em cada eixo como sendo o centímetro (cm), assinale o que for **correto**.

- 01) A circunferência C é centrada no ponto H = (-1, 1) e possui diâmetro medindo $4\sqrt{2}$ cm.
- 02) O quadrado Q tem lados medindo $\sqrt{8}$ cm.
- 04) As retas que contêm as diagonais do quadrado Q têm equações y = -x e y = x + 2.
- 08) A reta r de equação y = 5x 2 contém o centro da circunferência C.
- 16) O triângulo de vértices A = (2,0), B = (6,0) e C = (6,4) é congruente ao triângulo UVW, em que U, V e W são três vértices do quadrado Q.

Questão 19

Uma caixa contém 10 lâmpadas, das quais duas estão queimadas. As lâmpadas serão testadas uma a uma, até serem determinadas as duas queimadas. Em relação ao exposto, assinale o que for **correto**.

- 01) A probabilidade de a lâmpada do primeiro teste estar queimada é $\frac{1}{10}$.
- 02) Se a lâmpada do primeiro teste estiver boa, a probabilidade de a lâmpada do segundo teste estar queimada é $\frac{2}{9}$.
- 04) A probabilidade de serem feitos exatamente cinco testes para se determinar as duas lâmpadas queimadas é $\frac{2}{45}$.
- 08) A probabilidade de serem feitos mais que cinco testes para se determinar as duas lâmpadas queimadas é $\frac{7}{9}$.
- 16) A probabilidade de serem feitos menos que cinco testes para se determinar as duas lâmpadas queimadas é $\frac{4}{15}$.

Questão 2

As arestas de um cubo medem 10 cm. De cada um de seus vértices, retira-se uma pirâmide de base triangular, cujas arestas ligadas ao vértice do cubo possuem todas a mesma medida *a* e são partes das arestas do cubo. Após a remoção das pirâmides, obtém-se um poliedro convexo *P*. Baseando-se nessas informações, assinale o que for **correto**.

- 01) Se a < 5 cm, o poliedro P tem 14 faces.
- 02) Se a < 5 cm, o poliedro P tem 36 arestas.
- 04) Se a < 5 cm, o poliedro P tem 24 vértices.
- 08) Se a = 5 cm, o poliedro P tem 30 arestas.
- 16) Se a = 5 cm, o poliedro P tem 16 vértices.

MATEMÁTICA – Formulário

		A — FORMULATIO						
Trigonometria	$sen(x \pm y) = sen(x)cos(y) \pm sen(y)cos(x)$ $cos(x \pm y) = cos(x)cos(y) \mp sen(x)sen(y)$ $tg(x \pm y) = \frac{tg(x) \pm tg(y)}{1 \mp tg(x)tg(y)}$	Lei dos senos: $\frac{a}{\operatorname{sen}(\hat{A})} = \frac{b}{\operatorname{sen}(\hat{C})}$ Lei dos cossenos: $a^{2} = b^{2} + c^{2} - 2bc \cdot \cos(\hat{A})$						
Análise Combinatóri a	$P_{n} = n!$ $A_{n,r} = \frac{n!}{(n-r)!}$	$C_{n,r} = \frac{n!}{(n-r)!r!}$ $(a+b)^{n} = \sum_{i=0}^{n} C_{n,i} a^{n-i} b^{i}$						
Geometria Plana e Espacial	Comprimento da circunferência: $C = 2\pi R$ Área do losango: $A = \frac{d D}{2}$ Área do trapézio: $A = \frac{(b+B)h}{2}$ Área do círculo: $A = \pi R^2$ Área lateral do cilindro: $A = 2\pi Rh$ Área do setor circular: $A = \frac{R^2 \alpha}{2}$ Área lateral do cone: $A = \pi RG$ Área da superfície esférica: $A = 4\pi R^2$ Área total do tetraedro regular: $A = \sqrt{3} a^2$	Volume do paralelepípedo: V=B.h Volume do cubo: V = a^3 Volume do prisma: V = B · h Volume da pirâmide: V= $\frac{B \cdot h}{3}$ Volume do cilindro: V = $\pi R^2 h$ Volume do cone: V = $\frac{\pi R^2 h}{3}$ Volume da esfera: V = $\frac{4}{3}\pi R^3$						
Progressões	Progressão Aritmética (P. A.): $a_n = a_1 + (n-1)r$ $S_n = \frac{(a_1 + a_n)n}{2}$	Progressão Geométrica (P. G.): $a_n = a_1 q^{n-1}$ $S_n = \frac{a_1 - a_1 q^n}{1 - q}, q \neq 1$ $S_{\infty} = \frac{a_1}{1 - q}, q < 1$						
Geometria Analítica	Ponto Médio do segmento de extremidades A(x_1, y_1) e B(x_2, y_2): $M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Área do triângulo de vértices P(x_1, y_1), Q(x_2, y_2) e R(x_3, y_3): $A = \frac{1}{2} D , \text{ onde } D = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$	Distância de um ponto $P(x_0, y_0)$ à reta r : $ax + by + c = 0$ $d_{P,r} = \left \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}} \right $						
Conversão de unidades	$1 \text{ m}^3 = 1000 \ \ell$							