

Prova 3 – Química

QUESTÕES OBJETIVAS

Nº DE INSCRIÇÃO: N° DE ORDEM:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos Nº DE ORDEM, Nº DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o caderno de provas antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 20 questões objetivas e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 2 horas após o início da resolução da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluído o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta correta será a soma dos números associados às proposições verdadeiras. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme exemplo ao lado: questão 13, resposta 09 (soma das proposições 01 e 08).
- 8. Se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas constante nesta prova e destaque-o, para retirá-lo hoje, nesta sala, no horário das 13h15min às 13h30min, mediante apresentação do documento de identificação do candidato. Após esse período, não haverá devolução.
- 9. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.

13 (4) (5) (6) (7)

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS - PROVA 3

Nº DE ORDEM: NOME:

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

QUÍMICA

Questão 01

Assinale o que for **correto**.

- 01) De acordo com o modelo atômico de Dalton, o elétron é uma partícula maciça e indivisível.
- 02) Joseph J. Thomson, em seu modelo atômico, descrevia o átomo como uma massa de carga positiva que contém elétrons de carga negativa incrustados no seu interior que neutralizavam a massa positiva.
- 04) Ernest Rutherford, em seu modelo atômico, descrevia o átomo como uma estrutura na qual a carga positiva permanecia no centro, constituindo o núcleo, enquanto as cargas negativas giravam em torno desse núcleo.
- 08) Um íon de carga 2+ que apresenta a distribuição eletrônica 1s² 2s² 2p⁶ 3s² 3p⁴ possui 18 prótons em seu núcleo.
- 16) O átomo de carbono possui 2 elétrons desemparelhados em um orbital do tipo p.

Questão 02

A talidomida é uma substância usualmente utilizada como medicamento sedativo. Devido aos efeitos teratogênicos de um de seus isômeros óticos, esse medicamento não deve ser prescrito a mulheres em idade fértil, pois causa malformação ou ausência de membros em fetos. A respeito da molécula da talidomida abaixo, assinale o que for **correto**.

- 01) Os três anéis são aromáticos.
- 02) Possui um único centro quiral e apresenta dois isômeros oticamente ativos.
- 04) Possui duas aminas secundárias.
- 08) Uma mistura equivalente de seus isômeros S e R é descrita como uma mistura racêmica.
- 16) Apresenta carbonos com hibridização sp, sp² e sp³.

Questão 0

Considerando as semirreações abaixo e seus respectivos potenciais-padrão de redução, assinale o que for **correto**.

- 01) Uma pilha montada nas condições padrão com os pares Zn^{2+}/Zn e Ag^{+}/Ag fornecerá uma f.e.m. de 2,36 V.
- 02) Ao mergulharmos um fio de cobre metálico em uma solução de íons Ag^+ , nas condições padrão, ocorrerá deposição espontânea de prata sobre o fio de cobre.
- 04) Ao mergulharmos um fio de cobre metálico em uma solução 1,0 mol/ ℓ de íons Zn²⁺ a 25 °C e 1,0 atm, ocorrerá deposição espontânea de zinco sobre o fio de cobre.
- 08) Uma pilha montada nas condições padrão com os pares Zn²⁺/Zn e Cu²⁺/Cu terá o eletrodo de cobre metálico como polo negativo da pilha.
- 16) Uma pilha montada com cobre e prata possui equação global 2Ag⁺ + Cu ==> 2Ag + Cu²⁺.

Questão 04

A equação química abaixo representa o processo de síntese do luminol a partir do ácido 3-nitroftálico e da hidrazina. O luminol é um composto que, sob condições adequadas, apresenta quimioluminescência e por isso é utilizado em química forense (investigação de crimes) para a detecção de sangue. A respeito dessa reação, assinale o que for **correto**.

- 01) A formação da 5-nitroftalhidrazina ocorre com eliminação de uma molécula de água.
- 02) O Na₂S₂O₄ atua como agente oxidante.
- 04) Em solução aquosa, o ácido 3-nitroftálico apresenta caráter ácido, enquanto o luminol apresenta caráter básico.
- 08) Em reações de substituição eletrofílica aromática, o grupo nitro atua como grupo metadirigente, enquanto o grupo amina atua como ortoparadirigente.
- 16) A desidratação do ácido 3-nitroftálico puro gera o anidrido 3-nitroftálico.

- 01) Os calcogênios possuem maior densidade (ou densidade absoluta) do que os halogênios.
- 02) Num mesmo período, um metal alcalino terroso possui menor raio atômico do que um metal alcalino.
- 04) Um elemento que apresenta seus elétrons mais externos, em um nível P, possui maior ponto de fusão do que um elemento que apresenta seus elétrons mais externos, em um nível L.
- 08) O potencial de ionização de um elemento cujo elétron ionizável está em um subnível 3s é maior do que o potencial de ionização de um elemento cujo elétron ionizável está em um subnível 2s.
- 16) De modo geral, o volume atômico cresce e decresce da mesma maneira que o raio atômico, na tabela periódica.

Questão 06

Assinale o que for correto.

- 01) A hidrólise de proteínas causa a diminuição do seu tamanho de cadeia, sendo os polipeptídeos as menores unidades formadoras das proteínas, obtidos a partir da sua hidrólise.
- 02) A resina fenol-formaldeido é um exemplo de um polímero termoplástico.
- 04) O poli-isopreno tem a mesma estrutura química da borracha natural.
- 08) Recentemente a melamina foi utilizada de maneira criminosa na China para a adulteração do leite, pois a adição desse composto ao leite fazia aumentar o seu teor de nitrogênio.
- 16) A seguinte equação descreve a reação de formação do poliestireno a partir do estireno:

Questão 07

Assinale o que for correto.

- 01) No composto CaCO₃, são encontradas ligações do tipo covalente e iônica.
- 02) Quanto maior a diferença na eletronegatividade entre os átomos participantes de uma ligação, maior a probabilidade dessa ligação ser do tipo iônica.
- 04) O BF₃ possui geometria trigonal plana e apresenta hibridização tipo sp³.
- 08) O BeCl₂ possui geometria linear e apresenta hibridização tipo sp.
- 16) Compostos sólidos formados por ligações iônicas são duros e quebradiços e possuem altos pontos de fusão.

Questão 08

Considere alcoóis de fórmula $C_nH_{2n+1}OH$ e aminas de fórmula $(C_nH_{2n+1})_{3-x}NH_x$ e assinale a(s) alternativa(s) **correta(s)**.

- 01) O álcool que contém o menor número de átomos de carbono, sendo um deles assimétrico, é o 2-butanol.
- 02) O álcool será mais solúvel em água quanto maior for o valor de n.
- 04) De acordo com o valor de x, podemos classificar a amina em x=1: amina primária e x=2: amina secundária.
- 08) Aminas são compostos que apresentam valores de x iguais a 0, 1 ou 2 e, para x igual a 3, tem-se o composto amônia.
- 16) Tanto em alcoóis como em aminas primárias, as interações intermoleculares mais fortes são as forças de van der Waals.

Questão 09

Assinale o que for **correto**.

- 01) O Ca(OH)Cl é chamado de cloreto básico de cálcio ou hidróxi-cloreto de cálcio.
- 02) Bases são mais adequadas do que os ácidos, para remoção de gorduras em geral.
- 04) O H_2CrO_4 é mais conhecido como ácido crômico, mas também pode ser chamado de ácido ortocrômico.
- 08) O Al(OH)₃ é uma tribase de Arrhenius.
- 16) Ácidos possuem sabor adstringente, enquanto bases possuem sabor azedo.

Questão

Recentemente, um astrônomo amador conseguiu realizar fotos a cerca de 30 km da superfície da terra, utilizando um pequeno balão que carregava uma máquina fotográfica programada para coletar fotos automaticamente. A respeito dessa afirmação, assinale a(s) alternativa(s) **correta(s)**.

- 01) O astrônomo amador poderia utilizar gases, como o hidrogênio, o hélio ou o nitrogênio, para encher e fazer voar o seu balão.
- 02) Os dirigíveis muito utilizados antigamente em transporte aéreo eram considerados bombas aéreas, pois continham gás hélio, que é extremamente inflamável.
- 04) Sabendo-se que o astrônomo amador preencheu seu balão com uma quantidade de x gramas de gás hidrogênio, se o mesmo utilizasse 2x gramas desse gás no mesmo balão, este alcançaria uma altura muito maior antes de estourar.
- 08) Se o astrônomo utilizasse uma mistura de gases em seu balão, essa mistura poderia ser considerada como homogênea.
- 16) Os balões utilizados na prática de balonismo esportivo alçam vôo devido à queima de gás butano, que causa o aquecimento dos gases do interior do balão, fazendo com que esses gases se tornem menos densos que o ar.

Questão 11

Considerando a reação abaixo, em que o coeficiente estequiométrico "x" é uma incógnita, assinale o que for **correto**.

$$Al(OH)_{3(aq)} + \frac{3}{2}H_2SO_{4(aq)} ===> \frac{1}{2}Al_2(SO_4)_{3(s)} + x H_2O_{(l)}$$

- 01) Ao se reagir 156 g da base, irá se formar 342 g do sal.
- 02) O coeficiente "x" é igual a 6.
- 04) 3 mols de ácido reagem com 12,04 x 10²³ moléculas de base.
- 08) Em meio mol do sal, existem 2 mols de átomos de alumínio.
- 16) O número de oxidação do enxofre no $Al_2(SO_4)_3$ é igual a+4.

Questão 1

Em um posto de gasolina, a determinação do volume de etanol adicionado à gasolina pode ser feito por um teste simples, em que se adicionam, em um frasco graduado de 100 m², os volumes de 50 m² da gasolina e 50 m² de água, seguidos de forte agitação. Sobre esse teste, assinale o que for **correto**.

- 01) A mistura final obtida é heterogênea e apresenta 3 fases distintas.
- 02) As interações intermoleculares de ligação de hidrogênio entre as moléculas de água e etanol são muito mais fortes que as interações intermoleculares entre etanol e gasolina.
- 04) Se a mistura for deixada em repouso após sua agitação e for observada uma separação em duas fases, com volume de 60 m ℓ na fase aquosa e 40 m ℓ na fase orgânica, a gasolina possui 10% de etanol.
- 08) O teste pode também ser usado para identificar a presença de solventes adulterantes da gasolina, como o tolueno.
- 16) Um dos hidrocarbonetos componentes da gasolina, o 2,2,4-trimetilpentano, pode ser classificado com um hidrocarboneto ramificado, saturado e alifático.

Questão 13

Dadas as reações abaixo, assinale o que for **correto**.

 $\begin{array}{ll} H_3BO_{3(aq)} ==> HBO_{2(aq)} + H_2O_{(l)} & \Delta H = -2,30 \text{ kJ} \\ H_2B_4O_{7(aq)} + H_2O_{(l)} ==> 4HBO_{2(aq)} & \Delta H = -14,5 \text{ kJ} \\ H_2B_4O_{7(aq)} ==> 2B_2O_{3(s)} + H_2O_{(l)} & \Delta H = +22,7 \text{ kJ} \end{array}$

- 01) O ΔH para a reação $2H_{3}BO_{3(aq)} ==> B_{2}O_{3(s)} + 3H_{2}O_{(l)}$ é igual a 14,0 kJ.
- 02) A Lei de Hess diz que a variação de entalpia em uma reação depende apenas do estado final da reação.
- 04) O ΔH para a reação $2H_2B_4O_{7(aq)} + 10H_2O_{(l)} ==> 8H_3BO_{3(aq)}$ é igual a -10,6 kJ.
- 08) A formação de 352 g de HBO₂, a partir de $H_2B_4O_7$ e água, produz um ΔH de -29,0 kJ.
- 16) A reação $2B_2O_{3(S)}$ + $2H_2O_{(I)}$ ==> $4HBO_{2(aq)}$ é endotérmica.

seguir.

Linus Pauling, ganhador dos prêmios Nobel de Química e da Paz, ingeria diariamente entre 4 e 6 gramas dessa vitamina, por acreditar nos seus efeitos terapêuticos. No entanto, recomenda-se somente a ingestão diária de 3,5 x 10⁻⁴ mol dessa vitamina. Sobre essas informações, assinale o que for **correto**.

- 01) A vitamina C é lipossolúvel.
- 02) Em um mol de moléculas de vitamina C, encontramos 6 mols de átomos de carbono.
- 04) A molécula de vitamina C pode ser hidrolisada em meio ácido, convertendo sua função lactona para ácido carboxílico e álcool.
- 08) A ingestão diária de vitamina C feita por Linus Pauling aproximava-se a 1.000 vezes do valor recomendado.
- 16) A fórmula mínima da vitamina C é C₃H₄O₃.

Ouestão

Sobre cinética química e os fatores que influenciam a velocidade de reações químicas, assinale o que for correto.

- 01) Reações que envolvem sólidos tendem a prosseguir mais rapidamente se a área superficial dos sólidos for diminuída. Isso pode ser feito diminuindo-se o tamanho das partículas dos sólidos.
- 02) Para reações que envolvem líquidos, o aumento na concentração de um dos reagentes leva a um aumento na velocidade da reação, pois, conforme se aumenta a concentração, aumenta-se também a frequência com a qual as moléculas se chocam. Isto é válido desde que o reagente em questão faça parte da lei de velocidade.
- 04) O aumento da temperatura faz aumentar a energia das moléculas e, à medida que as moléculas movem-se mais velozmente, elas se chocam com maior frequência e também com energia mais alta, ocasionando um aumento na velocidade da reação.
- 08) Catalisadores são agentes que aumentam as velocidades das reações, afetando os tipos de colisões (mecanismos) que levam à reação.
- 16) A velocidade de uma reação química é geralmente expressa em termos de variação de entalpia por unidade de tempo.

GABARITO 1

Questão

A duas equações abaixo representam as reações de síntese e de decomposição explosiva da nitroglicerina. A respeito dessas reacões e dos compostos envolvidos, assinale o que for correto.

- 01) A glicerina pode ser também denominada propeno-1,2,3-triol.
- 02) O processo de explosão da nitroglicerina se dá pela conversão quase que instantânea de um pequeno volume desse líquido em um grande volume de gases, numa reação extremamente exotérmica.
- 04) O ácido sulfúrico é utilizado como um catalisador da reação de nitração e facilita a saída de moléculas de água.
- 08) A explosão da nitroglicerina pode matar uma pessoa tanto pela expansão dos gases de forma violenta como pela alta toxicidade dos gases gerados.
- 16) A alta liberação de calor em um explosivo se deve a ligações químicas fortes presentes no explosivo, contrariamente às ligações fracas presentes nos produtos gasosos.

Questão

As constantes de equilíbrio de reações químicas podem ter valores muito grandes ou muito pequenos. A ordem de grandeza dessas constantes fornece informações importantes sobre a composição de uma mistura em equilíbrio. Considerando a reação endotérmica abaixo, contida em um recipiente fechado de um litro que possui constante de equilíbrio igual a 1,5 x 10⁻⁸ a 10 °C, 0,1 x 10¹ a 25 °C e 1,5 x 10⁸ a 100 °C, assinale o que for **correto**.

$$CO_{(g)} + Cl_{2(g)} \longrightarrow COCl_{2(g)}$$

01) A expressão da constante de equilíbrio para essa reação pode ser escrita como $(P_{COCl_2})(P_{Cl_2})$

$$K_{eq} = K_p = \frac{(P_{COCl_2})(P_{Cl_2})}{P_{CO}}$$

- 02) A 10 °C, o equilíbrio encontra-se deslocado para a direita e, portanto, predominam os produtos.
- 04) No equilíbrio a 25 °C, se a pressão de $CO_{(g)}$ e $Cl_{2(g)}$ forem iguais a 10 atm, a pressão do $COCl_{2(g)}$ será igual a 1 atm.
- 08) A 100 °C, o equilíbrio encontra-se deslocado para a esquerda e, portanto, predominam os reagentes.
- 16) Com base nos dados do enunciado, um aumento na temperatura acima de 100 $^{\circ}$ C (à pressão constante) deverá favorecer a produção de $COCl_{2(g)}$.

Questão 18

A respeito de reações químicas de adição, assinale o que for **correto**.

- 01) A hidrogenação de alcenos é usada para a produção de margarinas a partir de óleos vegetais.
- 02) O produto principal da reação de adição entre o propeno e o ácido clorídrico, na ausência de peróxidos, é o 1-cloropropano.
- 04) A reação entre o acetileno e o Cl₂, em proporções equimolares, gera o cloreto de vinila, utilizado na produção do poli(cloreto de vinila), o PVC.
- 08) A reação do 1,3-butadieno em proporção equimolar com o Cl₂ gera como produto principal o 1,4-dicloro-2-buteno.
- 16) Através da hidratação do acetileno, é possível produzir o acetaldeído.

Questão 1

Assinale o que for correto.

- 01) Uma bebida alcoólica que possui 10% em massa de etanol e densidade igual a 0,97 g/ml terá uma concentração aproximada de 2,1 mol/l.
- 02) São necessários 42 g de fluoreto de sódio para fluoretar 38.000 litros de água, de tal modo que a concentração de íons fluoreto seja 0,5 ppm (partes por milhão).
- 04) Sabendo-se que o soro fisiológico é uma solução isotônica em relação aos líquidos corporais e que o mesmo contém 0,6% (massa/volume) de NaCl em água, sua concentração em mol/ ℓ será aproximadamente 0,1.
- 08) Assumindo que a concentração de SO₂ em uma solução é de 1 x 10⁻³ mols por litro, uma alíquota de 200 mℓ dessa solução terá aproximadamente 6,4 mg de dióxido de enxofre.
- 16) O leite é um tipo de colóide classificado como emulsão.

Questão 20

Assinale o que for **correto**.

- 01) A sacarose é um polissacarídeo de fórmula $(C_{12}H_{22}O_{11})_n$ encontrado em frutas, como a uva.
- 02) O amido é um dissacarídeo formado pela condensação de 2 moléculas de α-glicose, entre os carbonos 1 e 4.
- 04) Devido à grande presença de grupos OH em sua estrutura, tanto o amido quanto a celulose são solúveis em água.
- 08) A lactose é encontrada no leite e resulta da condensação de uma molécula de α -glicose com uma de β -galactose.
- 16) O glicogênio é um polissacarídeo de reserva alimentar nos animais e é formado pela condensação de moléculas de glicose.

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS COM MASSAS ATÔMICAS REFERIDAS AO ISÓTOPO 12 DO CARBONO

	1																	18
	IA																	VIIIA
	1 1 H Hidrogênio	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 4 He Hélio
	3 7 Li Lítio	4 9 Be Berílio											5 11 B Boro	6 12 C Carbono	7 14 N Nitrogênio	8 16 O Oxigênio	9 19 F Flúor	10 20 Ne Neônio
	11 23 Na Sódio	12 24 Mg Magnésio	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 27 Al Alumínio	14 28 Si Silício	15 31 P Fósforo	16 32 S Enxofre	17 35 Cl Cloro	18 40 Ar Argônio
	19 39 K Potássio	20 40 Ca Cálcio	21 45 Sc Escândio	22 48 Ti Titânio	23 51 V Vanádio	24 52 Cr Crômio	25 55 Mn Manganês	26 56 Fe Ferro	27 59 Co Cobalto	28 59 Ni Niquel	29 63 Cu Cobre	30 65 Zn Zinco	31 70 Ga Gálio	32 73 Ge Germânio	33 75 As Arsênio	34 79 Se Selênio	35 80 Br Bromo	36 84 Kr Criptônio
	37 85 Rb Rubidio	38 88 Sr Estrôncio	39 89 Y Ítrio	40 91 Zr Zircônio	41 93 Nb Nióbio	42 96 Mo Molibdênio	43 99 Tc Tecnécio	44 101 Ru Rutênio	45 103 Rh Ródio	46 106 Pd Paládio	47 108 Ag Prata	48 112 Cd Cádmio	49 115 In Índio	50 119 Sn Estanho	51 122 Sb Antimônio	52 128 Te Telúrio	53 127 I Iodo	54 131 Xe Xenônio
	55 133 Cs Césio	56 137 Ba Bário	57-71 La-Lu	72 178 Hf Háfnio	73 181 Ta Tântalo	74 184 W Tungstênio	75 186 Re Rênio	76 190 Os Ósmio	77 192 Ir Irídio	78 195 Pt Platina	79 197 Au Ouro	80 200 Hg Mercúrio	81 204 Tl Tálio	Pb Chumbo	83 209 Bi Bismuto	Po Polônio	85 210 At Astato	86 222 Rn Radônio
				87 223 Fr Frâncio	88 226 Ra Rádio	89-103 Ac-Lr	104 261 Db Dúbnio	105 262 J1 Joliôtio	106 150 Rf Rutherfördio	107 152 Bh Bóhrio	108 157 Hn Hâhnio	109 159 Mt Meitnério						
Número atômico Massa atômica* Série dos Lantanídeos																		
Símbolo-	3	7/ [.i		57 139 La Lantânio	58 140 Ce Cério	59 141 Pr Praseodímio	60 144 Nd Neodímio	61 147 Pm Promécio	62 150 Sm Samário	63 152 Eu Európio	64 157 Gd Gadolínio	65 159 Tb Térbio	66 162 Dy Disprósio	67 165 Ho Hólmio	68 167 Er Érbio	69 167 Tm Túlio	70 173 Yb Itérbio	71 175 Lu Lutécio
	1 -	ítio		Série dos Actinídeos														
Little			89 227 Ac	90 232 Th	91 231 Pa	92 238 U	93 237 Np	94 239 Pu	95 241 Am	96 244 Cm	97 249 Bk	98 252 Cf	99 252 Es	100 257 Fm	101 258 Md	102 259 No	103 262 Lr	
Nome			Actínio	Tório	Protactínio	Urânio	Netúnio	Plutônio	Amerício	Cúrio	Berquélio	Califórnio	Einstênio	Férmio	Mendelévio	Nobélio	Laurêncio	

*OS VALORES DAS MASSAS ATÔMICAS DOS ELEMENTOS FORAM ARREDONDADOS PARA FACILITAR OS CÁLCULOS. ESTA TABELA PERIÓDICA É EXCLUSIVA PARA ESTE VESTIBULAR E NÃO DEVE SER UTILIZADA PARA OUTRAS FINALIDADES.