

Prova 3 - Física

QUESTÕES OBJETIVAS

Nº DE ORDEM: Nº DE INSCRIÇÃO:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos Nº DE ORDEM, Nº DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o caderno de provas antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 40 questões objetivas (20 de cada matéria) e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 2 h após o início da resolução da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluído o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta correta será a soma dos números associados às proposições verdadeiras. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme exemplo ao lado: questão 13, resposta 09 (soma das proposições 01 e 08).
- 8. Se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas constante nesta prova e destaque-o, para retirá-lo hoje, nesta sala, no horário das 13h15min às 13h30min, mediante apresentação do documento de identificação do candidato. Após esse período, não haverá devolução.
- 9. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS

N° DE ORDEM: NOME:

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

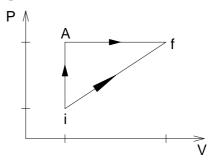
01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

FÍSICA

Questão 01

Em 1913, Niels Bohr propõe um modelo atômico incompatível com a Física da época, no qual os elétrons devem circular o núcleo atômico em órbitas com energias bem definidas, ou seja, discretas. Em 1923, Louis de Broglie postula a dualidade onda-partícula para corpos microscópicos, admitindo que o movimento do elétron em torno do núcleo atômico, no modelo de Bohr, estivesse associado a ondas estacionárias. Com relação às ondas estacionárias, assinale o que for **correto**.

- 01) Elas só ocorrem em condições especiais e discretas, ou seja, não contínuas.
- 02) Elas surgem da interferência de trens de ondas.
- 04) A frequência fundamental de uma onda estacionária é dependente da velocidade de propagação da onda no meio.
- 08) Para uma dada energia da fonte de ondas, o número de ventres de uma onda estacionária não é dependente da densidade do meio de propagação da onda.
- 16) Elas propiciam a existência das frequências naturais de ressonância em instrumentos sonoros.


Questão 02

Considere dois meios homogêneos distintos, de índices de refração $n_1 < n_2$, e assinale o que for **correto**.

- 01) Quando um feixe de luz monocromática se dirige do meio menos refringente para o meio mais refringente, o fenômeno da refração da luz não é observado.
- 02) Quando um feixe de luz monocromática se dirige do meio mais refringente para o meio menos refringente, pode haver reflexão interna total.
- 04) Um ângulo de incidência maior que o ângulo limite é condição necessária para que haja reflexão interna total.
- 08) Quando um feixe de luz monocromática se dirige do meio mais refringente para o meio menos refringente, sua velocidade de propagação no meio aumenta.
- 16) Quando um raio de luz monocromática passa do meio menos refringente para o meio mais refringente, ele se afasta da normal.

Questão

Um gás ideal pode ser levado desde um estado inicial i até um estado final f, seguindo dois caminhos distintos, if e iAf, conforme o diagrama PV ilustrado abaixo. Assinale o que for **correto**.

- 01) Quando o gás é levado do estado i para o estado A, sua energia interna aumenta.
- 02) Quando o gás é levado do estado A para o estado f, calor é transferido para o mesmo.
- 04) Quando o gás é levado diretamente do estado i para o estado f (caminho if), sua temperatura aumenta.
- 08) O trabalho realizado pelo gás é o mesmo, não importando qual o caminho escolhido para a realização do processo termodinâmico (caminhos if ou iAf).
- 16) A área do triângulo iAfi corresponde ao trabalho realizado pelo gás quando o caminho iAf for o escolhido para a transformação termodinâmica.

Questão 04

Analise as seguintes afirmativas:

- I. Em uma panela de pressão, a água pode atingir uma temperatura superior a 100 °C, sem entrar em ebulição.
- II. Uma garrafa cheia de cerveja pode estourar quando colocada em um congelador, pois a água da cerveja aumenta de volume ao se solidificar.
- III. Em uma panela comum, a água pode entrar em ebulição a uma temperatura menor que 100 °C, desde que o experimento seja feito em um local onde a pressão atmosférica seja menor que 1 atm.
- IV. O aumento na pressão provoca uma diminuição na temperatura de fusão das substâncias.

Dessas afirmativas, estão corretas

- 01) I e II.
- 02) II e III.
- 04) III e IV.
- 08) I e III.
- 16) II e IV.

05

Analise as afirmativas abaixo:

- I. Não existe transferência de calor no vácuo.
- II. A energia térmica se propaga nos sólidos, principalmente, por condução.
- III. Quanto maior a temperatura de um corpo, maior a quantidade de radiação emitida por ele.
- são melhores absorvedores e IV. Corpos escuros melhores emissores que os corpos claros.

Dessas afirmativas, estão corretas

- 01) I e II.
- 02) II e III.
- 04) III e IV.
- 08) III e I.
- 16) II e IV.

Questão

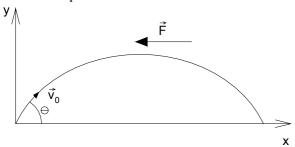
06

Com relação a ondas eletromagnéticas, assinale o que for correto.

- 01) No vácuo, os vetores \vec{E} e \vec{B} de uma onda eletromagnética são perpendiculares.
- 02) As microondas possuem comprimentos de onda maiores que as ondas de rádio FM (frequência modulada).
- 04) As ondas eletromagnéticas são ondas transversais, que podem ser polarizadas.
- 08) Quanto menor o comprimento de onda de uma onda eletromagnética do espectro eletromagnético, menor será sua energia.
- 16) Para calcularmos a intensidade de uma onda eletromagnética que se propague no vácuo, devemos conhecer somente o módulo do vetor campo elétrico ou o módulo do vetor campo magnético associado à onda.

Questão

07


Sobre lentes delgadas, assinale o que for **correto**.

- 01) Uma lente convexa imersa em um meio menos refringente que ela converge a luz que a atravessa.
- 02) Uma lente côncava imersa em um meio menos refringente que ela diverge a luz que a atravessa.
- 04) O centro óptico das lentes delgadas é o ponto de interseção da lente com o eixo principal.
- 08) Em uma lente convergente, os focos objeto e imagem são virtuais.
- 16) Em uma lente divergente, os focos objeto e imagem são reais.

GABARITO 3

Rascunho

Dois projéteis, um de massa M e outro de massa m (M > m), são lançados simultaneamente, com a mesma velocidade v_0 , formando o mesmo ângulo θ com a horizontal. Considerando sobre eles que constantemente a mesma força resistiva F (figura abaixo), paralela à superfície horizontal, podemos afirmar corretamente que

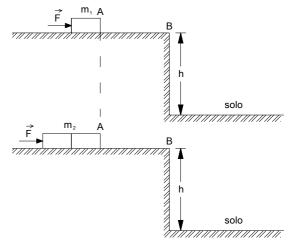
- 01) o projétil de massa M tem maior alcance que o projétil de massa m.
- 02) a altura máxima atingida pelo projétil de massa M é menor que a altura máxima atingida pelo projétil de massa m.
- 04) o módulo da força resultante que atua sobre o projétil de massa M é maior que o módulo da força resultante que atua sobre o projétil de massa m.
- 08) o projétil de massa M atinge o solo antes que o projétil de massa m o faça.
- 16) o módulo da aceleração do projétil de massa M é maior que o módulo da aceleração do projétil de massa m.

09

Considere um plano infinito e delgado imerso no vácuo, carregado positivamente e com densidade superficial de carga σ. Assinale a(s) alternativa(s) **correta(s)**.

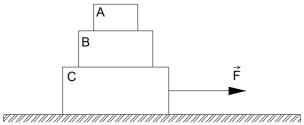
- 01) Nas vizinhanças da superfície do plano, o campo elétrico é uniforme.
- 02) O fluxo elétrico nas proximidades do plano é tanto menor quanto maior for a densidade superficial de cargas do plano.
- 04) O vetor campo elétrico emerge da superficie do plano e as linhas de força do campo elétrico são representadas por retas paralelas ao plano.
- 08) O módulo do campo elétrico próximo à superfície do plano é $\frac{\sigma}{2\epsilon_0}$.
- 16) Qualquer plano paralelo ao plano carregado pode representar uma superfície equipotencial.

Questão


10

Considere uma onda mecânica que se propaga em uma corda homogênea de acordo com a função horária $y = 2\cos 2\pi (2t - 4x)$, para x e y dados em centímetros e t dado em segundos, e assinale o que for correto.

- 01) A amplitude da onda é 2 cm.
- 02) O comprimento de onda da onda é 4 cm.
- 04) O período de oscilação da onda é 0,5 s.
- 08) A velocidade de propagação da onda no meio é 2 cm/s.
- 16) A onda que se propaga na corda é progressiva.


Questão

Duas massas m₁ e m₂ estão inicialmente em repouso, sobre uma superficie horizontal sem atrito, como ilustra a figura abaixo. São aplicadas em cada uma delas uma força constante F, até atingirem o final do plano horizontal, na posição B da figura. Nessa posição, as forças são removidas e, decorrido um tempo t de queda, as massas atingem o solo. Considere que $m_2 = 2m_1$, despreze a resistência do ar e assinale o que for **correto**.

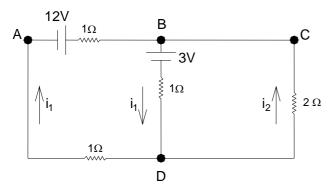
- 01) Ao atingirem a posição B, as velocidades das massas são iguais.
- 02) Ao atingirem a posição B, as acelerações das massas são iguais.
- 04) Até atingirem a posição B, as massas receberam o mesmo impulso.
- 08) Até atingirem a posição B, o trabalho realizado pela força F é o mesmo para as massas.
- 16) As massas atingem o solo ao mesmo tempo.

Os três blocos A, B e C da figura abaixo se movem juntos sob a ação da força F paralela à superfície horizontal. A força de atrito entre a superfície horizontal e o bloco C é nula. Desprezando a resistência do ar, assinale o que for correto.

- 01) Sobre o bloco A, atua uma força de atrito no mesmo sentido da força F.
- 02) Sobre o bloco B, atua uma força de atrito em sentido contrário à força F.
- 04) Sobre o bloco C, não atua força de atrito alguma.
- 08) A resultante das forças que atua no sistema formado pelos três blocos é F.
- 16) A resultante das forças que atua nos blocos A e B é

Questão

Analise as seguintes afirmativas:


- I. Uma das três leis de Newton estabelece que uma força sempre provoca variação na velocidade de um corpo.
- II. Uma das três leis de Newton estabelece que as forças sempre aparecem aos pares.
- III. Uma das três leis da termodinâmica estabelece que, em uma mudança de estado de um gás ideal, calor pode ser integralmente convertido em trabalho.
- IV. Uma das três leis da termodinâmica estabelece que uma máquina de Carnot pode ter rendimento de 100%.

Dessas afirmativas, estão corretas

- 01) I e II.
- 02) II e III.
- 04) III e IV.
- 08) IV e I.
- 16) II e IV.

GABARITO 3

Analise o circuito elétrico ilustrado abaixo e assinale o que for **correto**.

- 01) O circuito é composto por três nós e duas malhas.
- 02) Os pontos A e C são nós do circuito elétrico.
- 04) O somatório algébrico das correntes em B é nulo.
- 08) O valor da corrente elétrica i₁ é 3 A.
- 16) A diferença de potencial entre os pontos A e D é 3 V.

Questão 15

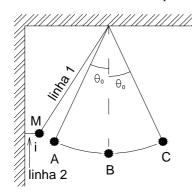
Com relação à capacitância e aos capacitores, é **correto** afirmar que

- 01) a diferença de potencial entre as placas de um capacitor de placas paralelas corresponde ao trabalho, por unidade de carga, necessário para deslocar uma pequena carga de uma placa a outra do capacitor.
- 02) a capacitância de um capacitor de placas paralelas é a constante de proporcionalidade entre a carga acumulada no mesmo e a diferença de potencial entre suas placas.
- 04) a capacitância equivalente de N capacitores associados em série é o somatório das capacitâncias dos capacitores individuais.
- 08) capacitores com capacitâncias variáveis podem ser empregados em circuitos elétricos para a sintonia de receptores de rádio.
- 16) a capacitância equivalente de N capacitores associados em paralelo é menor que a menor capacitância individual empregada na associação.

Questão

Nas mesmas condições iniciais, quantidades iguais de um gás ideal são colocadas em dois cilindros A e B, dotados de um êmbolo móvel sem atrito. O gás do cilindro A recebe Q calorias e sofre uma transformação isobárica quase estática. O gás do cilindro B recebe a mesma quantidade de calor e sofre uma transformação isotérmica quase estática. Ao final das transformações termodinâmicas, é **correto** afirmar que

- 01) o trabalho realizado pelo gás do cilindro A é maior que o trabalho realizado pelo gás do cilindro B.
- 02) o aumento na energia interna do gás no cilindro A é maior que o aumento da energia interna do gás no cilindro B.
- 04) a temperatura atingida pelo gás no cilindro A é maior que a temperatura atingida pelo gás no cilindro B.
- 08) a pressão atingida pelo gás no cilindro A é maior que a pressão atingida pelo gás no cilindro B.
- 16) o volume final do gás no cilindro A é maior que o volume final do gás no cilindro B.


Questão 17

São fornecidas as mesmas quantidades de calor para três massas m_1 , m_2 e m_3 . A temperatura da massa m_1 aumenta de uma quantidade T °C, a temperatura da massa m_2 aumenta de uma quantidade (T+1) °C e a temperatura da massa m_3 aumenta de uma quantidade (T-1) °C. Com base nessas informações, assinale o que for **correto**.

- 01) Se $m_1 = m_2$, o calor específico da massa m_1 é maior que o calor específico da massa m_2 .
- 02) Se $m_2 = m_3$, o calor específico da massa m_2 é maior que o calor específico da massa m_3 .
- 04) Se a razão entre as capacidades térmicas das massas m_1 e m_2 for igual a 2, então o aumento da temperatura de m_2 é de 2 °C.
- 08) Se a razão entre as capacidades térmicas das massas m_1 e m_3 for igual a 1/2, então o aumento da temperatura de m_1 é de 2 °C.
- 16) Se a razão entre as capacidades térmicas das massas m_2 e m_3 for igual a 1/2, então o aumento da temperatura de m_3 é de 2 °C.

18

Um corpo de massa M é mantido em repouso, na posição i indicada na figura abaixo, por meio de duas linhas inextensíveis e de massa desprezível, 1 e 2. Corta-se a linha 2 e a massa inicia uma oscilação pendular. Despreze a resistência do ar e assinale o que for **correto**.

- 01) Quando o corpo está na posição A ou na posição C, o módulo da tração na linha 1 é o mesmo.
- 02) Quando o corpo está na posição B, a tração na linha 1 é igual ao seu próprio peso.
- 04) O espaço percorrido pelo corpo de massa M pode ser calculado por meio da equação $S(t) = \frac{1}{2}at^2$ ($a \notin o$ módulo da aceleração resultante do corpo e $t \notin o$ tempo).
- 08) Quando o corpo está na posição B, sua aceleração centrípeta é máxima.
- 16) Quando o corpo está na posição A ou na posição C, o módulo de sua velocidade é o mesmo.

Questão

19

Um microscópio óptico tem objetiva com distância focal de 20 mm e ocular com 100 mm. Um objeto levado à análise ao microscópio está a 30 mm do centro óptico da objetiva, enquanto a ocular está colocada a 150 mm da objetiva. Assinale a(s) alternativa(s) **correta(s)**.

- 01) Nessa configuração, a imagem da objetiva, que é real, ampliada e invertida, serve de objeto para a ocular.
- 02) A imagem formada pela ocular é real, maior e direita.
- 04) A ampliação final desse microscópio é o produto das ampliações de suas lentes.
- 08) O aumento linear da ocular é 2 vezes.
- 16) O aumento linear do microscópio é 50 vezes.

20

Rascunho

Em 2008, entrou em fase de testes, no Centro Europeu de Pesquisas Nucleares (CERN), um aparato científico denominado LHC (*Large Hadrons Colider*). Esse aparato será, futuramente, empregado em experimentos de Física de Partículas Elementares e Altas Energias, através de experimentos de colisão entre átomos ou entre partículas subatômicas. Esses átomos ou partículas subatômicas são acelerados por meio da aplicação de intensos campos magnéticos e elétricos, que fazem que os mesmos alcancem velocidades comparáveis à velocidade da luz no vácuo. Com relação ao movimento de partículas carregadas no vácuo, na presença de campos elétricos e magnéticos uniformes, assinale o que for **correto**.

- 01) Um campo elétrico uniforme \vec{E} aplicará, em um elétron, uma força de natureza elétrica na mesma direção e no sentido oposto a \vec{E} .
- 02) Uma partícula carregada que se desloque na mesma direção do campo elétrico uniforme \vec{E} descreverá um movimento retilíneo uniforme.
- 04) Um próton que se desloque perpendicularmente ao campo magnético uniforme \vec{B} , mas na direção e sentido do campo elétrico uniforme \vec{E} , descreverá uma trajetória helicoidal.
- 08) Uma partícula carregada que se desloque paralelamente ao campo elétrico uniforme \vec{B} não estará sujeita à ação de forças de natureza magnética.
- 16) Para que uma partícula carregada que incida perpendicularmente ao plano formado por \vec{E} e \vec{B} descreva um movimento retilíneo uniforme, \vec{E} e \vec{B} devem ser perpendiculares entre si e as forças elétrica e magnética devem ser colineares, possuir o mesmo módulo e sentidos opostos.

FÍSICA — Formulário e Constantes Físicas

FISICA — FORMULATIO E CONSTANTES FÍSICAS									
	FORMULARIO	W - D:	CONSTANTES FÍSICAS						
$s = s_0 + v_0 t + \frac{1}{2} a t^2$	$\rho = \frac{m}{V}$	V = Ri	$G = 6.6 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$						
$v = v_0 + at$	$p = \frac{F}{A}$	$P = Vi = Ri^2 = \frac{V^2}{R}$	$k_0 = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$						
$v^2 = v_0^2 + 2a\Delta s$	$p = p_0 + \rho g h$	$V = \varepsilon - ri$ $F = BiLsen\theta$	$\mu_0 = 4\pi \times 10^{-7} \text{ Tm/A}$ $c = 3 \times 10^8 \text{ m/s}$						
$\vec{F}_R = m\vec{a}$	$E = \rho Vg$								
	$L = L_0 (1 + \alpha \Delta t)$	$C = \frac{k\varepsilon_0 A}{d}$	$\rho_{\text{água}} = 1.0 \text{ g/cm}^3$						
$F = m \frac{v^2}{r}$	$L = L_0 (1 + \alpha \Delta t)$	$C = \frac{q}{\Delta V}$	$c_{\text{água}} = 1.0 \text{ cal/g}^{\circ}\text{C}$						
$\vec{P} = m\vec{g}$	$L = L_0 (1 + \alpha \Delta t)$	$U = \frac{1}{2}C(\Delta V)^2$	$c_{\text{vapor d'água}} = 0.5 \text{ cal/g°C}$						
$f_a = \mu N$	Q = mL	2 ()	$L_{F(\acute{a}gua)} = 80 \text{ cal/g}$						
$W = Fd\cos\theta$	pV = nRT	$B = \frac{\mu_0 i}{2\pi r}$	$L_{V(\text{água})} = 540 \text{ cal/g}$						
$E_c = \frac{1}{2} \text{ mv}^2$	$Q = mc\Delta t$	$B = \frac{\mu_0 i}{2R}$	1 cal = 4,18 J						
$E_p = mgh$	$\Phi = \frac{KA}{L}(T_2 - T_1)$	$ \begin{array}{c} 2R \\ \phi_{B} = BS\cos\theta \end{array} $	$R = 0.082 \frac{\text{atm L}}{\text{mol K}}$						
$E_{p} = \frac{1}{2} kx^{2}$	$\Delta Q = W + \Delta U$	$\phi_{B} = BB \cos \theta$ $\phi_{B} = Li$							
$W = \Delta E_c$	$\eta = 1 - \frac{T_2}{T_1}$	$U_{\rm B} = \frac{1}{2} Li^2$	1 atm = 1,013 × 10 ⁵ N/m ² $T^2 = kr^3$						
$\vec{p} = \vec{mv}$	$W = p\Delta V$	2							
$I = F\Delta t = \Delta p$	$R = \frac{W}{Q_1}$	$\varepsilon = -\frac{\Delta \Phi_{B}}{\Delta t}$	$f_n = \frac{n}{2l} \sqrt{\frac{F}{\mu}}$						
$\tau = \pm Fdsen\theta$	$F = qvBsen\theta$	$n_1 \operatorname{sen}\theta_1 = n_2 \operatorname{sen}\theta_2$	$\sigma = \frac{\Delta q}{\Delta S}$						
$P = \frac{\Delta W}{\Delta t}$	$F = \frac{q_1 q_2}{4\pi \epsilon_0 r^2}$	$n_1 \operatorname{sen}\theta_1 = n_2 \operatorname{sen}\theta_2$ $\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$	$\phi = ES\cos\theta$						
$F = G \frac{m_1 m_2}{d^2}$	· ·		YE DOODS						
	$\vec{F} = q\vec{E}$	$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$							
$T = 2\pi \sqrt{\frac{L}{g}}$	$V = \frac{q}{4\pi\epsilon_0 r}$ $V = Ed$	$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$ $m = -\frac{p'}{p}$							
$T = 2\pi \sqrt{\frac{m}{k}}$	V = Ed	$v = \lambda f$ $E = mc^{2}$							
	$W_{AB} = qV_{AB}$	$E = mc^2$							
$U_{g} = -\frac{Gm_{1}m_{2}}{d}$	$i = \frac{\Delta q}{\Delta t}$	$m = m_0$							
	V = Ri	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$							
	$V = Ri$ $R = \rho \frac{L}{A}$								
	11								