VESTIBULA EM VERÃO 20

Prova 3 — Química

QUESTÕES OBJETIVAS

Nº DE ORDEM:

Nº DE INSCRIÇÃO:

NOME DO CANDIDATO:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Confira os campos Nº DE ORDEM, Nº DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.
- 2. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.
- 3. É proibido folhear o caderno de provas antes do sinal, às 9 horas.
- 4. Após o sinal, confira se este caderno contém 40 questões objetivas (20 de cada matéria) e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal.
- 5. O tempo mínimo de permanência na sala é de 1h e 30min após o início da prova.
- 6. No tempo destinado a esta prova (4 horas), está incluído o de preenchimento da Folha de Respostas.
- 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta será a soma dos números associados às alternativas corretas. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme exemplo ao lado: questão 13, resposta 09 (soma das alternativas 01 e 08).
- 8. Se desejar, transcreva as respostas deste caderno no Rascunho para Anotação das Respostas constante nesta prova e destaque-o, para retirá-lo hoje, nesta sala, no horário das 13h15min às 13h30min, mediante apresentação do documento de identificação do candidato. Após esse período, não haverá devolução.
- 9. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o Rascunho para Anotação das Respostas.

 $lue{\mathbb{O}}$ (4) (5) (6) (7)

Corte na linha pontilhada.

RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS

Nº DE ORDEM: NOME:

()1	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20

QUÍMICA

Questão 01

Dadas as reações abaixo, assinale o que for correto.

$$\begin{split} NO_{(g)} + 1/2O_{2(g)} = = > NO_{2(g)} & \Delta H = -14 \ kcal \ (reação \ 1) \\ 1/2N_{2(g)} + O_{2(g)} = = > NO_{2(g)} & \Delta H = +7.9 \ kcal \ (reação \ 2) \end{split}$$

- 01) A variação de entalpia da reação $1/2N_{2(g)}+1/2O_{2(g)}==>NO_{(g)}\ \acute{e}\ igual\ a\ 31,9\ kcal.$
- 02) A reação 1 absorve energia equivalente a 14000 calorias.
- 04) A reação 2 libera energia equivalente a 33022 joules.
- 08) A reação $NO_{(g)} ==> 1/2N_{2(g)} + 1/2O_{2(g)}$ absorve 21,9 kcal.
- 16) A reação 1 é exotérmica.

Questão 02

Assinale o que for correto.

- 01) Para a reação $2H_2O_{2(l)}=>2H_2O_{(l)}+O_{2(g)},$ a velocidade média em relação a $H_2O_{(l)}$ equivale a $\Delta[H_2O_{(l)}]^2/\Delta t.$
- 02) Se a lei de velocidade de uma dada reação é v=k[A]²[B]³, pode-se afirmar que a ordem total da reação é 5.
- 04) Para a reação $2AZ_{2(1)} ==> 2AZ + Z_{2(g)}$, cuja lei de velocidade é igual a $v=k[AZ_2]^2$, pode-se afirmar que a molecularidade é igual a 1.
- 08) Para a reação $G_{(g)} + E_{(s)} ==> GE_{(s)}$, pode-se afirmar que a velocidade da reação independe da concentração de $E_{(s)}$.
- 16) A dissolução de um gás em um solvente inerte é um processo exotérmico.

Questão 03

Assinale o que for **correto**.

- 01) Considerando que o Kps de um determinado sal MX é 2.5×10^{-9} a 25 °C, pode-se afirmar que a quantidade máxima, em mols, que se dissolve em $200 \text{ m}\ell$ de água pura a 25 °C é 1.0×10^{-5} .
- 02) Considerando que a solubilidade do CaCO₃ em água pura a 25 °C é 7,0 x 10^{-5} mol ℓ^{-1} , o Kps, a essa temperatura, será 4,9 x 10^{-9} .
- 04) Considerando que o Kps do Fe(OH)₃ em água pura a 25 °C é 4,0 x 10⁻³⁸, pode-se afirmar que sua solubilidade, a essa temperatura, será maior em uma solução-tampão de pH 8 do que em uma solução-tampão de pH 11.
- 08) Considerando que a dissolução do NH₄NO_{3(s)} em água pura é um processo endotérmico, seu Kps (em água pura) a 25 °C será maior do que a 40 °C.
- 16) A lei da ação das massas aplicada à reação de dissolução do $Ca_3(PO_4)_{2(s)}$ em água pura, a 25 °C, leva à expressão $Kps=[Ca^{2+}]^3.[PO_4^{3-}]^2$.

Questão 04

Considerando que a semi-reação abaixo representa o processo de cromagem, assinale o que for **correto**.

$$Cr_2O_7^{\ 2-} + 14H^+ + 12e^- ==> 2Cr + 7H_2O$$

- 01) Passando-se 10 ampères pela solução de $\text{Cr}_2\text{O}_7{}^2$ durante 44 horas, serão depositados 12 gramas de cromo.
- 02) Cada cromo do Cr₂O₇²⁻ recebe 12 elétrons.
- 04) O cromo do $Cr_2O_7{}^2-$ sofre um processo de redução ao se transformar em Cr.
- 08) A reação se processa em meio ácido.
- 16) Se partirmos de uma solução preparada pela dissolução de 1,176 kg de K₂Cr₂O₇, poderemos ter, no máximo, a formação de 416 g de cromo.

Considerando a reação abaixo, feita em um recipiente fechado, assinale o que for **correto**.

$$2NO_{2(g)} + 7H_{2(g)} = 2NH_{3(g)} + 4H_2O_{(l)}$$

- 01) A expressão para a constante de equilíbrio é $K_c = \frac{[NH_3]^2}{[NO_2]^2[H_2]^7} \ .$
- 02) Uma análise mostrou que, após o equilíbrio ser atingido, existem 3 mols de $NO_{2(g)}$, 12 mols de $H_{2(g)}$, 6 mols de $NH_{3(g)}$ e 8 mols de $H_2O_{(l)}$ em um recipiente de capacidade de 12 litros. Considerando essas informações, pode-se dizer que o K_c é 4,0.
- 04) O valor de K_c independe da temperatura do sistema, pois tem relação apenas com a pressão.
- 08) Se, após atingido o equilíbrio, adicionarmos mais $H_{2(g)}$ ao sistema, o valor de K_c diminui (considere temperatura constante).
- 16) Se, após atingido o equilíbrio, retirarmos $NO_{2(g)}$, será formado mais $H_{2(g)}$ (considere temperatura constante).

Questão 06

Com relação aos compostos abaixo, assinale o que for correto.

- A) cicloexano
- B) cicloexeno
- C) cicloexanol
- D) metilcicloexano
- 01) Todos os compostos possuem cadeias cíclicas normais.
- 02) Os compostos A, B e D são hidrocarbonetos.
- 04) O composto C é um fenol.
- 08) O composto B possui quatro carbonos hibridizados em sp³ e dois em sp².
- 16) Os compostos A, B e C possuem, respectivamente, cadeia heterogênea fechada normal saturada, cadeia heterogênea fechada normal insaturada, cadeia heterogênea fechada normal saturada.

Dadas as fórmulas abaixo, assinale o que for correto.

$$\begin{array}{cccc} & OH & CH_3 \\ | & | & | \\ C) & H-C=CH-CH-CH-CH_3 \\ & & CH_3 \\ \end{array}$$

- 01) A é isômero funcional de B.
- 02) A possui dois isômeros ópticos.
- 04) B e C são tautômeros.
- 08) A tem como tautômeros D e E, sendo E mais estável que D.
- 16) O composto A recebe o nome oficial de 2,3-dimetilpentanona-4.

Questão 08

Considerando as formas de ressonância da anilina, assinale o que for **correto**.

$$(I) \qquad (II) \qquad (III) \qquad (IV)$$

- 01) Segundo a regra de Hückel, a anilina (I) é um composto aromático, pois possui anel plano com elétrons π deslocalizados, formando uma nuvem π acima e abaixo do plano em um total de 6 elétrons π (portanto 4n + 2 elétrons π , onde n=1).
- 02) As estruturas de (I) a (IV) representam adequadamente o efeito indutivo na anilina.
- 04) A anilina, uma base mais forte que a água, reage com HCl para formar o cloreto de anilinium (ou cloreto de anilônio).
- 08) O grupo –NH₂, quando ligado ao anel aromático, é um poderoso ativador orto/para-dirigente em reações de substituição aromática eletrofílica.
- 16) A anilina reage com Br₂/H₂O em uma velocidade bem maior do que o benzeno reage com Br₂/H₂O.

Questão 09

Assinale o que for **correto**.

- 01) Ao se cozinhar feijão em uma panela de pressão, a temperatura de início da fervura depende da quantidade de calor fornecida.
- 02) Moléculas de metanol formam ligações de hidrogênio tanto entre si como com moléculas de água.
- 04) Moléculas do éter metóxi metano não formam ligações de hidrogênio entre si, mas formam-nas com moléculas de água.
- 08) Todos os álcoois são solúveis em água devido à formação de ligações de hidrogênio.
- 16) A adição de ácido octanóico em água leva à formação de um sistema bifásico, pois o ácido octanóico não tem polaridade suficiente para ser solúvel em água.

Rascunho

Assinale o que for **correto**.

- 01) Acetato de etila reage com cloreto de etil magnésio, dando um intermediário que, hidrolisado, forma a butanona e o etanol.
- 02) Metanal reage com cloreto de metil magnésio dando um intermediário que, hidrolisado, forma etano.
- 04) 3-etil-pentanol-3 reage com MnO₄⁻/H⁺ e aquecimento, em um sistema fechado, produzindo ácido etanóico (ácido acético) e pentanona-3.
- 08) Tendo em um reator uma mistura de aldeído e cetona em concentrações idênticas, ao se iniciar uma reação com adição de MnO₄ diluído e a frio, inicia-se a formação de um álcool secundário.
- 16) Cloreto de etanoíla reage com metilamina para formar etanamida.

Questão

111

Assinale o que for correto.

- 01) Em uma mesma família da tabela periódica, o raio atômico aumenta de cima para baixo.
- 02) O caráter não-metálico em um mesmo período da tabela periódica aumenta da esquerda para a direita.
- 04) O sódio é considerado um não-metal e o bromo, um metal.
- 08) A densidade absoluta do rutênio é maior do que a densidade absoluta do zircônio.
- 16) O potencial de ionização nos calcogênios aumenta de cima para baixo na tabela periódica.

Assinale o que for correto.

- 01) Um elemento químico pode formar duas ou mais substâncias simples diferentes.
- 02) $C_{\text{diamante}}\,e\;C_{\text{grafite}}$ são formas alotrópicas do carbono.
- 04) O fenômeno químico da vaporização é o responsável pelo cheiro de naftalina em armários nos quais foram colocadas bolinhas de naftalina.
- 08) Em um processo de separação de misturas, a filtração é usada para separar líquidos miscíveis.
- 16) Uma solução aquosa insaturada de sulfato de cobre contendo areia constitui um sistema bifásico.

Questão 13

Com base no relatório de análises abaixo (informações I, II e III), assinale o que for **correto**.

- I. Um composto X é formado por 33,33% do elemento A e 66,66% do elemento B.
- II. Um composto Y é formado por 20% do elemento A e 80% do elemento B.
- III. Porcentagens em massa; os elementos A e B são os mesmos nas informações I e II.
- 01) Os dados não estão de acordo com a Lei de Dalton.
- 02) X e Y são substâncias diferentes formadas pelos mesmos elementos.
- 04) Para formar 50 g de Y, são consumidos 10 g de B e 40 g de A.
- 08) Se 3 g de A reagiram com 12 g de B, o produto formado foi o Y.
- 16) Para formar 30 g de X, são consumidos 9,99 g de B.

Questão 14

Assinale o que for correto.

- 01) Considere um gás confinado em um cilindro que contém um pistão, a 27 °C, ocupando um volume de 350 ml. Mantendo-o à pressão constante e resfriando o sistema para 17 °C, ocorrerá o movimento do pistão devido à expansão do volume para 362 ml.
- 02) A -23 °C, uma amostra de gás exerce uma pressão de 750 mmHg em um recipiente fechado. Se a temperatura for elevada para 27 °C, a pressão do sistema se eleva para 900 mmHg.
- 04) Nas CNTP, o volume ocupado por um mol do gás ozônio (O₃) é igual a 2/3 do volume ocupado por um mol do gás oxigênio (O₂).
- 08) Nas CNTP, o volume ocupado por 3.01×10^{22} moléculas do gás He é igual a 1.12ℓ .
- 16) Em uma mistura gasosa constituída de 22 g de CO₂ e 64 g de O₂, o gás oxigênio contribui quatro vezes mais que o gás carbônico na pressão total exercida pela mistura gasosa.

Questão 15

Assinale o que for **correto**.

- 01) Segundo os experimentos e as observações de Rutherford, os átomos possuem um núcleo muito pequeno em relação ao volume total do átomo.
- 02) Segundo o modelo atômico de Rutherford, um átomo é constituído de um núcleo com massa insignificante em relação à massa total.
- 04) ¹²₆C, ¹³₆C e ¹⁴₆C são isótopos.
- 08) ¹⁴₆C e ¹⁴₇N são isóbaros, sendo que, nesse exemplo, o átomo de carbono possui 8 nêutrons e o de nitrogênio 7 nêutrons.
- 16) Podemos dizer que os átomos 45/2E e 47/G são isótonos.

Rascunho

Assinale o que for correto.

- 01) A configuração eletrônica 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² pode representar um átomo no estado fundamental cujo número atômico é 20.
- 02) O átomo de manganês, ²⁵Mn, tem treze elétrons no nível 3 e dois elétrons no nível 4.
- 04) O átomo de bromo, ³⁵Br, tem dez elétrons no subnível 3d e sete elétrons no nível 4.
- 08) O potencial de ionização do ¹⁹K é maior do que o potencial de ionização do ⁴Be, pois os elétrons do potássio, em maior número, são atraídos mais fortemente pelo seu núcleo.
- 16) O oxigênio é mais eletronegativo que o enxofre porque o núcleo do oxigênio exerce um maior poder de atração devido ao seu menor raio atômico.

Questão

17

Assinale o que for correto.

- 01) O ácido permangânico e o ácido perclórico possuem fórmulas HMnO₄ e HClO₃, respectivamente.
- 02) O monóxido de carbono é um exemplo de sal neutro.
- 04) A decomposição térmica do carbonato de cálcio gera dióxido de carbono e óxido de cálcio.
- 08) O óxido cuproso e o óxido cúprico possuem fórmulas CuO e Cu₂O, respectivamente.
- 16) O NaHSO₄ pode ser chamado de bissulfato de sódio ou sulfato monoácido de sódio.

Questão

18

Assinale o que for **correto**.

- 01) As ligações C-H no metano são do tipo covalente e a geometria molecular é tetraédrica.
- 02) No cloreto de amônio, NH₄Cl, a ligação entre o nitrogênio e o cloro é uma ligação covalente.
- 04) A molécula de água é polar, porém a molécula do H_2O_2 é apolar.
- 08) As substâncias iônicas possuem, em geral, baixos pontos de ebulição.
- 16) Uma liga de sódio metálico e potássio metálico possui alta condutividade elétrica.

GABARITO 3

19

Considerando a reação $\underline{\mathbf{a}}S + \underline{\mathbf{b}}O_2 + \underline{\mathbf{c}}H_2O ==> \underline{\mathbf{d}}H_2SO_4$, assinale o que for **correto**.

- 01) A soma dos coeficientes **a**, **b**, **c** e **d**, em menores números inteiros, é igual a 9.
- 02) O número de oxidação do S no H₂SO₄ é 6.
- 04) 32 gramas de S formarão 98 gramas de H₂SO₄.
- 08) Trata-se de uma reação de decomposição.
- 16) O número de oxidação do oxigênio da água é 1.

Questão

20

Assinale o que for correto.

- 01) Sabendo-se que o K_{ps} do $BaSO_4$ é aproximadamente 10^{-10} a 25 °C, uma solução preparada pela mistura de 0,002 gramas de $BaSO_{4(s)}$ com 1,0 litro de água pura, a 25 °C, dará origem a uma solução saturada.
- 02) Uma solução que contém 460 g de glicerol ($C_3H_8O_3$) e 270 g de água terá 0,25 como fração molar de glicerol.
- 04) Uma substância que muda de cor em certa faixa de pH, denominada zona de viragem, é um indicador ácido-base.
- 08) O nevoeiro é um tipo de colóide, classificado como emulsão.
- 16) O fator de Van't Hoff (i) indica o número de íons liberados por molécula do soluto e é usado como um fator de correção para as equações que tratam das propriedades coligativas.

Rascunho