

Prova 3 — Química

QUESTÕES OBJETIVAS

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE QUÍMICA.

GABARITO 3

QUÍMICA

01 – Observe os dados a seguir:

$$\begin{split} &2Mg_{(s)} + O_{2(g)} ==> 2MgO_{(s)} \quad \Delta H^o = -1203,6 \; kJ \\ &Mg(OH)_{2(s)} ==> MgO_{(s)} + H_2O_{(l)} \quad \Delta H^o = +37,1 \; kJ \\ &2H_{2(g)} + O_{2(g)} ==> 2H_2O_{(l)} \quad \Delta H^o = -571,7 \; kJ \end{split}$$

Baseando-se no exposto acima, a entalpia padrão do Mg(OH)_{2(s)}, a 25 °C e 1 atm, é, aproximadamente,

- A) +850,5 kJ.
- B) +37,1 kJ.
- C) -37,1 kJ.
- D) -887,6 kJ. E) -924,7 kJ.
- 02 Qual é a massa aproximada de cádmio que se deposita no cátodo, via eletrólise ígnea, em uma cela eletroquímica que contém CdCl₂ fundido, ao se passar uma corrente de 6 Ampères por 134 minutos? (Dados: constante de Faraday = 96500 C)
 - A) 28 g
 - B) 0,47 g
 - C) 0,56 g
 - D) 56 g
 - E) 47 g
- 03 Considere um litro de uma solução aquosa contendo 1.0×10^{-3} mols de íons Mg^{2^+} . Adicionando-se lentamente uma solução aquosa de NaOH $0.1 \text{ mol. } \ell^{-1}$, começará a se formar o sólido $Mg(OH)_2$ (Kps = 1.8×10^{-11}) somente quando o volume da solução de NaOH ultrapassar (Obs.: considere que a variação de volume é desprezível e que $\sqrt{1.8} \cong 1.34$.)
 - A) 134 m ℓ .
 - B) 1,34 m ℓ .
 - C) 13,4 m ℓ .
 - D) $1,34 \times 10^{-4} \text{ m}\ell$.
 - E) 1340 m ℓ .

04 – Ao fazer a limpeza de um armário em um laboratório de química, um aluno deparou-se com três frascos sem rótulo, contendo compostos líquidos e incolores. A listagem de compostos na porta do armário mostrava que o mesmo armazenava propan-1-ol, butan-1-ol e n-pentano. Para descobrir qual composto continha em cada frasco, o aluno mediu o ponto de ebulição (P.E.) e a solubilidade em água de cada composto, possibilitando a elaboração da tabela abaixo.

Composto	P.E. (°C)	solubilidade em água	
	a 1 atm	$(g/100g \text{ água}) \text{ a 25 }^{\circ}\text{C}$	
I	97	infinita	
II	36	insolúvel	
III	117	7,9	

Com base nos dados da tabela e considerando que a massa molar do propan-1-ol é 60 g. mol⁻¹, do butan-1-ol é 74 g.mol⁻¹ e do n-pentano é 72 g.mol⁻¹, o aluno pode chegar à conclusão de que os líquidos I, II e III eram, respectivamente,

- A) butan-1-ol, n-pentano e propan-1-ol.
- B) butan-1-ol, propan-1-ol e n-pentano.
- C) propan-1-ol, butan-1-ol e n-pentano.
- D) propan-1-ol, n-pentano e butan-1-ol.
- E) n-pentano, butan-1-ol e propan-1-ol.
- **05** Qual é o pH aproximado de uma solução obtida através da mistura de 100 m ℓ de uma solução aquosa de HCN 1 x 10^{-2} mol. ℓ^{-1} com 100 m ℓ de uma solução aquosa de KCN 5 x 10^{-2} mol. ℓ^{-1} , sabendo-se que o Ka do HCN é 4,9 x 10^{-10} (pKa = 9,31)?

(Dados: $\log 5 \approx 0.7$)

A) pH = 2

B) pH = 12

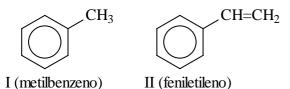
C) pH = 10

D) pH = 7

E) pH = 4

06 – Assinale a alternativa **incorreta**.

- A) Um sistema contendo água no estado líquido, óleo e cubos de gelo é constituído por três fases e duas substâncias.
- B) Uma solução aquosa não-saturada de NaCl com cubos de gelo é constituída de duas fases.
- C) Ponto de fusão e densidade são propriedades de grande importância na análise da pureza de amostras sólidas de substâncias conhecidas.
- D) Uma amostra líquida passa para o estado de vapor somente ao atingir o seu ponto de ebulição.
- E) A formação da ferrugem é exemplo de fenômeno químico.


Cálculos

Cálculos

$$Zn + 2 HCl ==> ZnCl_2 + H_{2(g)}$$

(Dados:
$$R = 0.082 \text{ atm } \ell \text{ mol}^{-1} \text{ K}^{-1}$$
)

- A) 0,769 ℓ
- B) 2,2 ℓ
- C) 22 ℓ
- D) 6,2 ℓ
- E) 62,1 ℓ
- **08** Considerando os compostos I e II, assinale a alternativa **correta**.

- A) O composto II não é aromático, pois possui 8 elétrons pi.
- B) O composto I não é aromático, pois possui um carbono sp³ com quatro ligações simples.
- C) O composto II tem anel planar, pois todos os carbonos do anel são sp².
- D) No composto I, todas as ligações C-C e C-H fazem ângulos de 120º entre si.
- E) No composto II, existem sete carbonos com hibridização sp² e um com hibridização sp.
- **09** Considerando os dados abaixo, assinale a alternativa **incorreta**.

Átomo	prótons	nêutrons	elétrons
ou íon			
I	17	18	17
II	11	12	11
III	17	20	17
IV	11	12	10
V	17	18	18

- A) V é ânion de I.
- B) I, III e V têm o mesmo número de massa.
- C) IV é cátion de II.
- D) I e III são isótopos.
- E) I e V têm mesmo número de massa.

- **10** Assinale a alternativa que descreve **corretamente** a equação química das reações a seguir:
 - (I) hidróxido de sódio + carbonato de cálcio ==> carbonato de sódio + hidróxido de cálcio
 - (II) nitrato de prata + cloreto férrico ==> cloreto de prata + nitrato férrico
 - (III) sulfito monoácido de potássio + ácido clorídrico ==> ácido sulfuroso + cloreto de potássio
 - A) (I) $2NaOH + CaCO_3 ==> Na_2CO_3 + Ca(OH)_2$ (II) $3AgNO_3 + FeCl_3 ==> 3AgCl + Fe(NO_3)_3$ (III) $KHSO_3 + HCl ==> H_2SO_3 + KCl$
 - B) (I) $2NaOH + CaCO_3 ==> Na_2CO_3 + Ca(OH)_2$ (II) $2AgNO_3 + FeCl_2 ==> 2AgCl + Fe(NO_3)_2$ (III) $KHSO_3 + HCl ==> H_2SO_3 + KCl$
 - C) (I) $2NaOH + K_2CO_3 ==> Na_2CO_3 + K_2(OH)_2$ (II) $3AgNO_3 + FeCl_3 ==> 3AgCl + Fe(NO_3)_3$ (III) $KHSO_3 + HCl ==> H_2SO_3 + KCl$
 - D) (I) $Na(OH)_2 + CaCO_3 ==> NaCO_3 + Ca(OH)_2$ (II) $3AgNO_3 + FeCl_3 ==> 3AgCl + Fe(NO_3)_3$ (III) $KHSO_3 + HCl ==> H_2SO_3 + KCl$
 - E) (I) 2NaOH + CaCO₃ ==> Na₂CO₃ + Ca(OH)₂ (II) 3AgNO₃ + FeCl₃ ==> 3AgCl + Fe(NO₃)₃ (III) NaHCO₃ + HCl ==> H₂CO₃ +NaCl
- 11 Quantos elétrons desemparelhados existem em um átomo que possui a configuração eletrônica $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^3$?
 - A) 1 elétron
 - B) 2 elétrons
 - C) 3 elétrons
 - D) 4 elétrons
 - E) 5 elétrons
- 12 Três átomos cujos números atômicos são 8, 11 e 17 estão classificados na tabela periódica, respectivamente, como
 - A) um gás nobre, um metal alcalino e um metal alcalino-terroso.
 - B) um halogênio, um não-metal e um metal alcalino-terroso.
 - C) um metal alcalino, um halogênio e um calcogênio.
 - D) um calcogênio, um metal alcalino e um halogênio.
 - E) um gás nobre, um metal alcalino e um halogênio.

Cálculos

13 - Considerando a equação química abaixo, assinale a alternativa incorreta.

$$OCH_3$$
 OCH_3 $OCH_$

- A) FeBr₃ não é consumido neste processo.
- B) O produto orgânico formado, uma mistura de 2-bromo-metoxi-benzeno e 4-bromo-metoxibenzeno, é uma consequência do maior efeito indutivo ativante do grupo metóxi, comparado ao seu pequeno efeito de ressonância desativante.
- C) O grupo metóxi é orto para dirigente.
- D) Substâncias com anéis benzênicos em suas estruturas podem sofrer reações de substituição eletrofílica.
- E) O eletrófilo da reação acima é o Br⁺ (formado pela interação do catalisador FeBr₃ com Br₂) que substitui um hidrogênio aromático.
- 14 Sabendo-se que o deutério ₁H² (D) é isótopo do hidrogênio ₁H¹, que o volume de um mol de H₂O ou de D₂O são praticamente iguais e que a densidade de H_2O a uma dada temperatura é igual a 1,00 g.m ℓ^{-1} , é correto afirmar que a densidade do D2O nessa mesma temperatura é, aproximadamente,
 - A) 1,1 g.m ℓ^{-1} .
 - B) $2,0 \text{ g.m}\ell^{-1}$.
 - C) 1,0 g.m ℓ^{-1} .
 - D) 3,0 g.m ℓ^{-1} .
 - E) 1,3 g.m ℓ^{-1} .
- 15 Considerando a fórmula estrutural do composto abaixo, assinale a alternativa incorreta.

- A) O composto possui a função tautomeriza com a função cetona.
- B) O composto possui uma função álcool.
- C) O composto possui 2 carbonos primários.
- D) O composto possui 4 dos seus átomos de carbono formando somente ligações simples e apenas 2 átomos de carbono que formam ligação dupla entre eles.
- E) O composto tem fórmula molecular C₆H₁₂O.