

Prova 3 — Química

QUESTÕES OBJETIVAS

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE QUÍMICA.

GABARITO 2

QUÍMICA

- 01 Os números de oxidação dos átomos Sb, Br, Ir, Fe, C e P, nos compostos Sb_4O_{10} , BrO_4^- , $IrCl_6^-$, $Na_2Fe_2O_4$, CaC_2O_4 e $HPO_3^{\ 2^-}$, serão, respectivamente,
 - A) +5, +7, +5, +3, +3 e +3.
 - B) -5, +5, +5, +3, -3 e +3.
 - C) +5, +7, +5, +2, +3 e +1.
 - D) +7, -5, +5, -4, +2 e -4.
 - E) -5, -7, -5, -3, -3 e -3.
- **02** A reação na fase gasosa 2ClO_{2(g)} + F_{2(g)} ==> 2FClO_{2(g)} é de primeira ordem com relação a cada um dos reagentes (dados experimentais). A 250 K, a constante de velocidade da reação é de 1,2 L mol⁻¹ min⁻¹. Sendo assim, a ordem total da reação e a velocidade da reação, quando [ClO₂] = 0,02 mol L⁻¹ e [F₂] = 0,035 mol L⁻¹, nessas condições, serão, respectivamente,
 - A) $2 e 16.8 \times 10^{-6} \text{ mol L}^{-1} \text{ min}^{-1}$.
 - B) $3 e 16.8 \times 10^{-6} \text{ mol L}^{-1} \text{ min}^{-1}$.
 - C) $3 \text{ e } 4.8 \text{ x } 10^{-5} \text{ mol L}^{-1} \text{ min}^{-1}$
 - D) $2 e 8.4 \times 10^{-4} \text{ mol L}^{-1} \text{ min}^{-1}$.
 - E) $2 e 4.8 \times 10^{-5} \text{ mol L}^{-1} \text{ min}^{-1}$.
- 03 Quando uma amostra sólida de hidróxido de sódio é dissolvida em água formando 100,0 g de solução, a temperatura dessa solução aumenta de 26°C para 49°C. O ΔH (em kJ) para essa dissolução, assumindo que o calor específico da solução seja igual a 1 cal g⁻¹ °C⁻¹, será, aproximadamente,
 - (Obs.: considere que 1 cal = 4,18 J e que a dissolução ocorre à pressão constante.)
 - A) 9615.
 - B) 9,6.
 - C) 38450.
 - D) 0,0384.
 - E) 3,84.
- 04 A reação de neutralização do ácido perclórico com bicarbonato de sódio e seus produtos pode ser representada pela equação química
 - A) $HClO_4 + NaHCO_3 ==> NaClO_4 + H_2O + CO_2$.
 - B) $HClO_3 + NaHCO_3 \Longrightarrow NaClO_3 + H_2O + CO_2$
 - C) $2HClO_4 + Na_2CO_3 ==> 2NaClO_4 + H_2O + CO_2$
 - D) $2HClO_3 + Na_2CO_3 ==> 2NaClO_3 + H_2O + CO_2$
 - E) $HClO_2 + NaHCO_3 = > NaClO_2 + H_2O + CO_2$

05 – Assinale a alternativa **correta**.

- A) Nevoeiro, xampu e leite são exemplos de substâncias no estado coloidal, classificadas como aerosóis.
- B) Leite, maionese e pedra-pomes são exemplos de substâncias no estado coloidal, classificadas como emulsões.
- C) Geléia, xampu e chantilly são exemplos de substâncias no estado coloidal, classificadas como espumas.
- D) Gelatina, queijo e geléia são exemplos de substâncias no estado coloidal, classificadas como géis.
- E) Ligas metálicas, fumaça e asfalto são exemplos de substâncias no estado coloidal, classificadas como sóis.

06 – Assinale a alternativa **correta**.

- A) A molécula CCl₄ é apolar e formada por ligações apolares.
- B) Toda molécula polar é formada por ligações apolares.
- C) A molécula BCl₃ possui geometria piramidal e é polar.
- D) A molécula CCl₃H tem a forma de um tetraedro irregular e é polar.
- E) As moléculas H₂S e H₂O são angulares e possuem o mesmo valor de momento dipolar.
- 07 Sabendo que, no ar seco, há 78% (em volume) de nitrogênio gasoso, a massa aproximada desse gás (N_2) contida em um pneu que foi enchido com 100 litros de ar seco, a uma temperatura de 12° C, exercendo uma pressão total (ar) de 45 lb pol $^{-2}$, será de

(Considere N_2 como gás ideal; 1 atm $\cong 15$ lb pol⁻²; constante dos gases ideais = 0,082 atm L K⁻¹ mol⁻¹.)

- A) 28 g.
- B) 28 Kg.
- C) 280 g.
- D) 280 Kg.
- E) 140 g.

- 08 Em um reator, colocam-se 1,0 mol de metoxibenzeno, 1,0 mol de benzoato de metila, 1,0 mol de Cl₂ e 0,05 mol de catalisador. Esse reator é colocado sob condições energéticas de modo que ocorra a reação (substituição eletrofilica aromática). Ao final da reação, é encontrado no reator, como produto, 1,0 mol de uma mistura contendo o-clorometoxibenzeno e p-clorometoxibenzeno. A partir dessas informações, assinale a alternativa
 - A) O cloro reage preferencialmente com o metoxibenzeno devido ao efeito indutivo ativante do grupo metóxi.
 - B) Será também encontrado, no reator, 0,05 mol de *p*-clorobenzoato de metila.
 - C) O cloro reage preferencialmente com o metoxibenzeno devido ao efeito ativante (por ressonância) do grupo metóxi.
 - D) Será também encontrado, no reator, 1,0 mol de *m*-clorobenzoato de metila.
 - E) A reação de benzoato de metila com cloro é mais rápida do que a reação do metoxibenzeno com cloro.

09 – Assinale a alternativa **correta**.

- A) A distribuição eletrônica do íon Ca^{2+} é $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^2$.
- B) A distribuição eletrônica do íon Mg²⁺ é 1s² 2s² 2p⁶ 3s² 3p².
- C) A distribuição eletrônica do íon Ca²⁺ é igual à do íon Na⁺.
- D) A distribuição eletrônica do íon Na⁺ é 1s² 2s² 2p⁴ 3s².
- E) A distribuição eletrônica do íon Sr^{2+} é igual à do íon Rb^+ .

10 – Assinale a alternativa **correta**.

- A) Os átomos ¹⁷₈O e ¹⁶₈O são isótopos do oxigênio.
- B) O átomo ⁴⁰/₁₉K tem número de massa igual a 21.
- C) O átomo ⁷⁸/₃₃As tem 33 nêutrons e 45 prótons.
- D) Os átomos ${}^{12}_{6}$ C , ${}^{13}_{6}$ C e ${}^{14}_{6}$ C têm o mesmo número de massa.
- E) Os átomos $^{20}_{10}$ Ne e $^{19}_{9}$ F têm o número de nêutrons diferente.

11 – Considere os pares de compostos abaixo.

- Propanal e prop-1-en-1-ol
- Etóxi-etano e metóxi-propano
- 1-hidróxi-2-etil-benzeno e 1-hidróxi-3-etilbenzeno
- 1-hidróxi-2-n-propil-benzeno e 3-fenil-propan-1-ol
- Cicloexano e metilciclopentano

Nesses compostos, encontramos, respectivamente, as isomerias

- A) de função, tautomeria, de compensação, de posição e de cadeia.
- B) de função, de compensação, de posição, de cadeia e tautomeria.
- C) tautomeria, de compensação, de posição, de cadeia e de função.
- D) de função, de posição, de compensação, tautomeria e de cadeia.
- E) tautomeria, de compensação, de posição, de função e de cadeia.

12 – Dados os compostos abaixo, assinale a alternativa incorreta.

- I. CH₃-CH₂-OH
- II. CH₃-CHO
- III. CH3-COOH
- IV. CH3-COONa
- A) Os nomes dos compostos I, II, III e IV são, respectivamente, etanol, etanal, ácido etanóico e etanoato de sódio.
- B) A oxidação do composto I leva ao composto II, e a oxidação do composto II leva ao composto III.
- C) O etanol pode ser reduzido a ácido acético e esse procedimento é utilizado na produção do vinagre.
- D) O composto IV pode ser obtido por meio da reação do composto III com NaOH.
- E) O composto I só possui ligações simples e os demais possuem uma ligação dupla cada.

13 – Assinale a alternativa incorreta.

- A) O átomo de carbono é tetravalente devido à sua possibilidade de hibridização.
- B) De acordo com sua distribuição eletrônica, existem, para o átomo de carbono, dois orbitais com elétrons desemparelhados e, por isso, ele forma apenas duas ligações covalentes.
- C) Uma cadeia carbônica de um alcano linear não pode apresentar carbonos terciários ou quaternários.
- D) A cadeia carbônica de um alceno linear ou cíclico possui, ao menos, uma ligação dupla.
- E) Um alcino ramificado com 5 átomos de carbono tem o nome de metilbutino.

14 – Assinale a alternativa **incorreta**.

- A) A massa molar do ZrB₂ é de 113 g/mol.
- B) O elemento cloro possui maior potencial de ionização do que o elemento alumínio.
- C) A reação $2HCl_{(l)} ==> H_{2(g)} + Cl_{2(g)}$ é uma reação de decomposição.
- D) Uma solução aquosa a 25°C com [H⁺] = 0,0001 possui pOH = 10.
- E) A molécula de ozônio é linear e possui momento dipolar igual a zero.
- **15** Considerando que, a uma certa temperatura, a solubilidade do $CaCO_3$ em água pura é $7 \times 10^{-5} \text{ mol L}^{-1}$, o seu produto de solubilidade em água pura e sua solubilidade em uma solução 0,05 mol L^{-1} de $CaCl_2$, na mesma temperatura, serão, respectivamente,
 - A) $4.9 \times 10^{-10} \text{ e } 8.9 \times 10^{-8} \text{ mol L}^{-1}$.
 - B) $4.9 \times 10^{-9} \text{ e } 9.8 \times 10^{-8} \text{ mol L}^{-1}$.
 - C) $0.7 \times 10^{-9} \text{ e } 8.9 \times 10^{-8} \text{ mol } \text{L}^{-1}$.
 - D) $4.9 \times 10^{-9} \text{ e } 9.8 \times 10^{-9} \text{ mol L}^{-1}$.
 - E) 14×10^{-10} e 9.8×10^{-10} mol L⁻¹.